electrodynamics, and modified gravity theories

R. Conti, J. Romano, C. Ferko, N. Brizio, J. Hou, T. Morone, S. Negro, G. Tartaglino-Mazzucchelli,
H. Babaei-Aghbolagh, S. He, H. Ouyang

The $T \bar{T}$ Lagrangian flow equation in $\mathbf{2 d}$ is:

$$
\left\{\begin{array}{l}
\partial_{\tau} \mathscr{L}(\tau)=\operatorname{det}\left(T_{\mu \nu}(\tau)\right), \\
T_{\mu \nu}(\tau)=\frac{-2}{\sqrt{g}} \frac{\partial \mathscr{L}(\tau)}{\partial g^{\mu \nu}}
\end{array}\right.
$$

Dynamical change of coordinates $=T \bar{T}$ deformations

$$
\mathcal{J}^{-1}=\binom{\partial_{w} z \partial_{w} \bar{z}}{\partial_{\bar{w}} z \partial_{\bar{w}} \bar{z}}=\left(\begin{array}{cc}
1-\tau \Theta(\mathbf{w}) & -\tau \bar{T}(\mathbf{w}) \\
-\tau T(\mathbf{w}) & 1-\tau \Theta(\mathbf{w})
\end{array}\right)
$$

[Picture by Y. Jiang]

$$
\phi^{(\tau)}(\mathbf{z})=\phi^{(0)}(\mathbf{w}(\mathbf{z})), \quad \mathbf{z}=(z, \bar{z}), \quad \mathbf{w}=(w, \bar{w})
$$

Metric tensor:

$$
\mathbf{g}_{\mu \nu}^{\prime}=\delta_{\mu \nu}-\tau \epsilon_{\mu \rho} \epsilon_{\nu}^{\sigma}\left(2 T+\tau T^{2}\right)_{\sigma}^{\rho}
$$

Proposed $T \bar{T}$ geometric intrepretations

1) There exists a random geometry interpretation of the $T \bar{T}$ deformation of quantum field theory [Cardy]

$$
e^{2 \delta t} \int_{\mathcal{D}} \epsilon_{i k} \epsilon_{j l} T^{i j} T^{k l} d^{2} x \times \int[d h] e^{-(1 / 8 \delta t)} \iint_{\mathcal{D}} \epsilon^{i k} \epsilon^{j l} h_{i j} h_{k l} d^{2} x+\int_{\mathcal{D}} h_{i j} T^{i j} d^{2} x
$$

(Hubbard-Stratonovich transformation)
2) Any $T \bar{T}$-deformed field theory is dynamically equivalent to its associated unperturbed theory coupled to (flat) Jackiw-Teitelboim gravity [Dubovsky-Gorbenko-Mirbabayi].

$$
S_{\mathrm{M}, \tau} \simeq S_{\mathrm{M}}+\int \mathrm{d}^{2} \mathbf{x} \sqrt{-g}\left(\varphi R-\Lambda_{2}\right) \quad \tau \propto \Lambda_{2}^{-1}
$$

3) The $T \bar{T}$ deformation of a generic field theory is equivalent to coupling the undeformed field theory to 2D 'ghost-free massive gravity' [Tolley].

$$
S_{T \bar{T}}[\varphi, f, e]=\int \mathrm{d}^{2} x \frac{1}{2 \lambda} \epsilon^{\mu \nu} \epsilon_{a b}\left(e_{\mu}^{a}-f_{\mu}^{a}\right)\left(e_{\nu}^{b}-f_{\nu}^{b}\right)+S_{0}[\varphi, e] \quad \lambda \propto \tau
$$

$$
\begin{aligned}
& \mathcal{L}^{\mathrm{MBI}}(\mathcal{A}, \tau)=\frac{-1+\sqrt{1-\tau \operatorname{Tr}\left[F^{2}\right]+\frac{\tau^{2}}{4}(\operatorname{Tr}[F \widetilde{F}])^{2}}}{2 \tau} \quad \text { Born-Infeld nonlinear electrodynamics 4d } \\
& \widetilde{F}_{\mu \nu}=\frac{1}{2} \epsilon_{\mu \nu \rho \sigma} F^{\rho \sigma}
\end{aligned}
$$

$$
\partial_{\tau} \mathcal{L}^{\mathrm{MBI}}=\sqrt{\operatorname{det}\left[T^{\mathrm{MBI}}\right]}=\frac{1}{4}\left(\frac{1}{2} \operatorname{Tr}\left[T^{\mathrm{MBI}}\right]^{2}-\operatorname{Tr}\left[\left(T^{\mathrm{MBI}}\right)^{2}\right]\right)
$$

Main objective:

Study Irrelevant/Marginal perturbations and their relation with Modified Gravity Models in d>2:

$$
S_{\mathrm{M}, \tau}+S_{\mathrm{G}} \simeq S_{\mathrm{M}}+S_{\mathrm{G}, \tau}
$$

$T \bar{T}$-type deformations in $\mathbf{d}>2$

Consider the family of deformations defined by the flow equation

$$
\left\{\begin{array}{l}
\frac{\partial S_{\mathrm{M}, \tau}}{\partial \tau}=\int d^{d} \mathbf{x} \sqrt{-g} \mathcal{O}_{d, \tau}^{[a, b]}, \quad S_{\mathrm{M}, \tau_{0}}:=S_{\mathrm{M}} \\
T_{\tau, \mu \nu}=\frac{-2}{\sqrt{g}} \frac{\delta S_{\mathrm{M}, \tau}}{\delta g^{\mu \nu}}
\end{array}\right.
$$

with perturbing operator

$$
\mathcal{O}_{d, \tau}^{[a, b]}:=\frac{1}{d}\left(a \operatorname{tr}\left[\mathbf{T}_{\tau}\right]^{2}-b \operatorname{tr}\left[\mathbf{T}_{\tau}^{2}\right]\right), \quad a, b \in \mathbb{R}, d \geq 2
$$

where

$$
\mathbf{T}_{\tau}=\left(g^{\mu \alpha} T_{\tau, \alpha \nu}\right)_{\mu, \nu \in\{0, \ldots, d-1\}} \text { is a } d \times d \text { dimensional matrix }
$$

In two dimensions, since

$$
\mathcal{O}_{2, \tau}^{[1,1]}=\frac{1}{2}\left(\operatorname{tr}\left[\mathbf{T}_{\tau}\right]^{2}-\operatorname{tr}\left[\mathbf{T}_{\tau}^{2}\right]\right)=\operatorname{det}\left[\mathbf{T}_{\tau}\right]
$$

we recover the usual definition of $\mathrm{T} \overline{\mathrm{T}}$ deformations when setting $a=1, b=1$.

The metric approach

T $\overline{\mathrm{T}}$-type perturbations can be understood as the generators of the metric flow

$$
\begin{cases}\frac{d g_{\tau, \mu \nu}}{d \tau}=-\frac{4}{d} \widehat{T}_{\tau, \mu \nu} & \mathcal{O}_{d, \tau}^{[a, b]}=\frac{1}{d} \widehat{T}_{\tau, \mu \nu} T_{\tau}^{\mu \nu} \\ \frac{d \widehat{T}_{\tau, \mu \nu}}{d \tau}=\frac{4}{d} \widehat{T}_{\tau, \mu}^{\alpha} \widehat{T}_{\tau, \alpha \nu}+\xi_{\tau} \widehat{T}_{\tau, \mu \nu}+\chi_{\tau} g_{\tau, \mu \nu} & \text { where }\end{cases}
$$

and where ξ_{τ} and χ_{τ} are scalar functions of the energy-momentum tensor defined as

$$
\xi_{\tau}=\frac{2}{d}(b-d a) \operatorname{tr}\left[\mathbf{T}_{\tau}\right], \quad \chi_{\tau}=\frac{d a-b}{d}\left(a \operatorname{tr}\left[\mathbf{T}_{\tau}\right]^{2}-b \operatorname{tr}\left[\mathbf{T}_{\tau}^{2}\right]\right)
$$

The idea is then to Taylor expand the metric $g_{\tau, \mu \nu}$ around $\tau=\tau_{0}$ as

$$
g_{\tau, \mu \nu}=\sum_{n=0}^{\infty} \frac{g_{\tau_{0}, \mu \nu}^{(n)}}{n!}\left(\tau-\tau_{0}\right)^{n}, \quad g_{\tau_{0}, \mu \nu}^{(0)}=g_{\mu \nu}
$$

The first two coefficients $g_{\tau_{0}, \mu \nu}^{(1)}$ and $g_{\tau_{0}, \mu \nu}^{(2)}$ are:

$$
\begin{aligned}
& g_{\tau_{0}, \mu \nu}^{(1)}=-\frac{4}{d} \widehat{T}_{\tau_{0}, \mu \nu}, \\
& g_{\tau_{0}, \mu \nu}^{(2)}=\frac{16}{d^{2}} \widehat{T}_{\tau_{0}, \mu}^{\alpha} \widehat{T}_{\tau_{0}, \alpha, \nu}+\frac{4}{d} \xi_{\tau_{0}} \widehat{T}_{\tau_{0}, \mu \nu}+\frac{4}{d} \chi_{\tau_{0}} g_{\mu \nu}
\end{aligned}
$$

There are some exceptional cases in which the whole expansion truncates at low orders. When $d=4, a=1 / 2$ and $b=1$, if the matrix $\mathbf{T}_{\tau_{0}}$ admits two independent eigenvalues $\left\{\ell_{0}, \ell_{1}\right\}$, each of multiplicity 2 .

$$
g_{\tau, \mu \nu}=h_{\mu \nu}=g_{\mu \nu}+\left(\tau-\tau_{0}\right)\left[T_{\tau_{0}, \mu \nu}-\frac{1}{2} \operatorname{tr}\left[\mathbf{T}_{\tau_{0}}\right] g_{\mu \nu}\right]
$$

The degeneracy condition on the stress-energy tensor turns out to be satisfied in many physically relevant examples, such as Abelian gauge theories.

$$
\begin{aligned}
\frac{\partial S_{U(1), \tau}}{\partial \tau} & =\int d^{4} \mathbf{x} \sqrt{-g} \mathcal{O}_{4, \tau}^{[1 / 2,1]} \\
& =\int d^{4} \mathbf{x} \sqrt{-g} \sqrt{\operatorname{det}\left[\mathbf{T}_{\tau}\right]}
\end{aligned}
$$

[Conti-Iannella-Negro-RT, Ferko-Smith-Tartaglino Mazzucchelli]

When $d=4, b=0$, the deforming operator triggers the pure-trace deformation

$$
g_{\tau, \mu \nu}=h_{\mu \nu}=g_{\mu \nu}-a\left(\tau-\tau_{0}\right) \operatorname{tr}[\mathbf{T}] g_{\mu \nu}
$$

and the corresponding flow equation is:

$$
\frac{\partial S_{\mathrm{M}, \tau}}{\partial \tau}=\frac{a}{4} \int d^{4} \mathbf{x} \sqrt{-g} \operatorname{tr}\left[\mathbf{T}_{\tau}\right]^{2}
$$

Under the change of metric, we have, for this family $T \bar{T}$-like operators :

$$
\left.\left\{S_{\mathrm{M}}\left[g_{\mu \nu}, \Phi_{I}\right]-\left(\tau-\tau_{0}\right) \int d^{d} \mathbf{x} \sqrt{-g} \mathcal{O}_{d, \tau_{0}}^{[a, b]}\right\}\right|_{g=g(h)}=S_{\mathrm{M}, \tau}\left[h_{\mu \nu}, \Phi_{I}\right]
$$

Ricci-based gravity theories

We consider a gravitational theory described by the action in the Palatini-like framework:

$$
S_{\mathrm{G}, \kappa}\left[g_{\mu \nu}, \Gamma_{\mu \nu}^{\lambda}\right]=\int \mathrm{d}^{d} \mathbf{x} \sqrt{-g} \mathcal{L}_{\mathrm{G}, \kappa}(\mathbf{R}(\Gamma)) \quad \quad \mathbf{R}=\left(g^{\mu \alpha} \mathcal{R}_{(\alpha \nu)}\right)_{\mu, \nu \in\{0, \ldots, d-1\}}
$$

symmetric part, invariant under a projective transformation

$$
\Gamma_{\mu \nu}^{\lambda} \rightarrow \Gamma_{\mu \nu}^{\lambda}+\xi_{\mu} \delta_{\nu}^{\lambda}
$$

i.e. the metric and the connection are treated as independent dynamical fields, and the Ricci curvature tensor is considered a functional of the connection only.

In the weak-coupling limit, we require:

$$
\mathcal{L}_{\mathrm{G}, \kappa}=\frac{1}{2} \operatorname{tr}[\mathbf{R}]-\Lambda+O(\kappa)=\mathcal{L}_{\mathrm{EH}}-\Lambda+O(\kappa)
$$

The next step involves performing the minimal coupling with matter:

$$
S_{\kappa}\left[g_{\mu \nu}, \Gamma_{\mu \nu}^{\lambda}, \Phi_{I}\right]=S_{\mathrm{G}, \kappa}\left[g_{\mu \nu}, \Gamma_{\mu \nu}^{\lambda}\right]+S_{\mathrm{M}}\left[g_{\mu \nu}, \Phi_{I}\right]
$$

Note that we assume that Γ does not explicitly enter the matter action S: matter fields do not directly couple to the connection.
\rightarrow A scenario which generally holds for bosonic and Abelian gauge fields.

The classical equations of motion for this theory are obtained by performing variations with respect to each independent field:

$$
\frac{\partial \mathcal{L}_{\mathrm{G}, \kappa}}{\partial g^{\mu \nu}}=\frac{\partial \mathcal{L}_{\mathrm{G}, \kappa}}{\partial g^{\rho \alpha} \mathcal{R}_{(\alpha \beta)}} \frac{\partial g^{\rho \sigma} \mathcal{R}_{(\sigma \beta)}}{\partial g^{\mu \nu}}=\frac{\partial \mathcal{L}_{\mathrm{G}, \kappa}}{\partial g^{\mu \alpha} \mathcal{R}_{(\alpha \beta)}} \mathcal{R}_{(\beta \nu)}
$$

Hence, requiring $\delta_{g} S_{\kappa}=0$, one obtains

$$
2 \frac{\partial \mathcal{L}_{\mathrm{G}, \kappa}}{\partial g^{\mu \alpha} \mathcal{R}_{(\alpha \beta)}} \mathcal{R}_{(\beta \nu)}-\mathcal{L}_{\mathrm{G}, \kappa} g_{\mu \nu}=T_{\tau_{0}, \mu \nu}
$$

(Not the standard Einstein field equation!)
where we introduced the stress-energy tensor of the matter theory

$$
T_{\tau_{0}, \mu \nu}:=\frac{-2}{\sqrt{-g}} \frac{\delta S_{\mathrm{M}}}{\delta g^{\mu \nu}}
$$

Setting $\delta_{\Gamma} S_{\kappa}=0 \quad$ with $\quad \mathcal{R}_{\mu \nu}=\partial_{\alpha} \Gamma_{\nu \mu}^{\alpha}-\partial_{\nu} \Gamma_{\alpha \mu}^{\alpha}+\Gamma_{\alpha \beta}^{\alpha} \Gamma_{\nu \mu}^{\beta}-\Gamma_{\nu \beta}^{\alpha} \Gamma_{\alpha \mu}^{\beta}$
one gets

$$
\Gamma_{\mu \nu}^{\lambda}=\frac{1}{2}\left(h^{-1}\right)^{\lambda \alpha}\left(\partial_{\nu} h_{\mu \alpha}+\partial_{\mu} h_{\alpha \nu}-\partial_{\alpha} h_{\mu \nu}\right)
$$

where we introduced the auxiliary metric tensor $h_{\mu \nu}$ defined by its inverse $\left(h^{-1}\right)^{\mu \nu}$ as

$$
\frac{1}{2} \sqrt{-h}\left(h^{-1}\right)^{\mu \nu}:=\sqrt{-g} g^{\mu \alpha} \frac{\partial \mathcal{L}_{\mathrm{G}}}{\partial g^{\mu \alpha} \mathcal{R}_{(\alpha \nu)}}, \quad h:=\operatorname{det}\left[h_{\mu \nu}\right] .
$$

\rightarrow the auxiliary metric h is such that the connection must be h -compatible.

RBG frame and the Einstein frame

[Olmo-Rubiera Garcia-Sanchis Alepuz (2013), Olmo-Rubiera Garcia (2022), Delsate-Steinhoff (2013), Delhom-Olmo-Orazi (2015)]

It has been demonstrated that Ricci-based gravity theories can be recast into GR ones, provided we introduce modified couplings in the matter sector of the full action.

To achieve such a result, we define the auxiliary gravitational action

$$
\widehat{S}_{\mathrm{G}, \kappa}\left[g_{\mu \nu}, \Gamma_{\mu \nu}^{\lambda}, H_{\nu}^{\mu}\right]=\int \mathrm{d}^{d} \mathbf{x} \sqrt{-g}\left\{\mathcal{L}_{\mathrm{G}, \kappa}(\mathbf{H})+\left(g^{\mu \alpha} \mathcal{R}_{(\alpha \nu)}-H_{\nu}^{\mu}\right) \frac{\partial \mathcal{L}_{\mathrm{G}, \kappa}}{\partial H_{\nu}^{\mu}}\right\}
$$

Then the total action is

$$
\widehat{S}_{\kappa}\left[g_{\mu \nu}, \Gamma_{\mu \nu}^{\lambda}, H_{\nu}^{\mu}, \Phi_{I}\right]=\widehat{S}_{\mathrm{G}, \kappa}\left[g_{\mu \nu}, \Gamma_{\mu \nu}^{\lambda}, H_{\nu}^{\mu}\right]+S_{\mathrm{M}}\left[g_{\mu \nu}, \Phi_{I}\right]
$$

Performing the variation with respect to the matrix field H , we have

$$
\delta_{H} \widehat{S}_{\kappa}=\int \mathrm{d}^{d} \mathbf{x} \sqrt{-g}\left\{\frac{\partial \mathcal{L}_{\mathrm{G}, \kappa}}{\partial H_{\beta}^{\alpha}}+\left(g^{\mu \rho} \mathcal{R}_{(\rho \nu)}-H_{\nu}^{\mu}\right) \frac{\partial^{2} \mathcal{L}_{\mathrm{G}}}{\partial H_{\nu}^{\mu} \partial H_{\beta}^{\alpha}}-\frac{\partial \mathcal{L}_{\mathrm{G}, \kappa}}{\partial H_{\beta}^{\alpha}}\right\} \delta H_{\beta}^{\alpha}
$$

which constrains the on-shell value of \mathbf{H} to

$$
\mathbf{H}^{\star}=\mathbf{R}
$$

Therefore, we have the dynamical equivalence:

$$
\widehat{S}_{\kappa}\left[g_{\mu \nu}, \Gamma_{\mu \nu}^{\lambda},\left(H^{\star}\right)_{\nu}^{\mu}, \Phi_{I}\right] \simeq S_{\kappa}\left[g_{\mu \nu}, \Gamma_{\mu \nu}^{\lambda}, \Phi_{I}\right]
$$

The gravitational sector can be recast into the more familiar form:

$$
\widehat{S}_{\mathrm{G}, \kappa}=\int \mathrm{d}^{d} \mathbf{x} \sqrt{-g} g^{\mu \alpha} \mathcal{R}_{(\alpha \nu)} \frac{\partial \mathcal{L}_{\mathrm{G}}}{\partial H_{\nu}^{\mu}}+\int \mathrm{d}^{d} \mathbf{x} \sqrt{-g}\left(\mathcal{L}_{\mathrm{G}, \kappa}-H_{\nu}^{\mu} \frac{\partial \mathcal{L}_{\mathrm{G}, \kappa}}{\partial H_{\nu}^{\mu}}\right)
$$

Introducing another auxiliary metric tensor h :

$$
\frac{1}{2} \sqrt{-h}\left(h^{-1}\right)^{\mu \nu}=\sqrt{-g} g^{\mu \alpha} \frac{\partial \mathcal{L}_{\mathrm{G}}}{\partial H_{\nu}^{\alpha}} \underset{\text { on-shell ! }}{\longrightarrow} \frac{1}{2} \sqrt{-h}\left(h^{-1}\right)^{\mu \nu}=\sqrt{-g} g^{\mu \alpha} \frac{\partial \mathcal{L}_{\mathrm{G}, \kappa}}{\partial g^{\rho \alpha} \mathcal{R}_{(\rho \nu)}}
$$

We can finally write:

$$
\begin{aligned}
\widehat{S}_{\kappa} & =\frac{1}{2} \int \mathrm{~d}^{d} \mathbf{x} \sqrt{-h}\left(h^{-1}\right)^{\mu \nu} \mathcal{R}_{(\mu \nu)}+\int \mathrm{d}^{d} \mathbf{x} \sqrt{-g}\left(\mathcal{L}_{\mathrm{G}}-H_{\nu}^{\mu} \frac{\partial \mathcal{L}_{\mathrm{G}}}{\partial H_{\nu}^{\mu}}\right)+S_{\mathrm{M}}\left[g_{\mu \nu}, \Phi_{I}\right] \\
& =\frac{1}{2} \int \mathrm{~d}^{d} \mathbf{x} \sqrt{-h}\left(h^{-1}\right)^{\mu \nu} \mathcal{R}_{(\mu \nu)}+S_{\mathrm{M}, \tau_{0}+\kappa}\left[g_{\mu \nu}, H_{\nu}^{\mu}, \Phi_{I}\right],
\end{aligned}
$$

where we defined a new matter action $S_{\mathrm{M}, \tau_{0}+\varepsilon}$ which incorporates the residual H-dependence

Defining:

$$
T_{\tau_{0}+\kappa, \mu \nu}:=\frac{-2}{\sqrt{-h}} \frac{\delta S_{\mathrm{M}, \tau_{0}+\kappa}}{\delta h^{\mu \nu}}
$$

The equations of motion are:

$$
\mathcal{R}_{(\mu \nu)}-\frac{1}{2}\left(h^{-1}\right)^{\alpha \beta} \mathcal{R}_{(\alpha \beta)} h_{\mu \nu}=T_{\tau_{0}+\kappa, \mu \nu}
$$

and, setting $H^{*}=R$, the new Lagrangian for the matter is:

$$
\left.\left\{S_{\mathrm{M}}\left[g_{\mu \nu}, \Phi_{I}\right]+\int \mathrm{d}^{d} \mathbf{x} \sqrt{-g}\left(\mathcal{L}_{\mathrm{G}, \kappa}-g^{\mu \alpha} \mathcal{R}_{(\alpha \nu)} \frac{\partial \mathcal{L}_{\mathrm{G}, \kappa}}{\partial g^{\mu \beta} \mathcal{R}_{(\beta \nu)}}\right)\right\}\right|_{g=g(h)}=S_{\mathrm{M}, \tau_{0}+\kappa}\left[h_{\mu \nu}, \Phi_{I}\right]
$$

That should be compared with:

$$
\text { Can we find a match, with } \kappa \propto\left(\tau-\tau_{0}\right) \text { ? }
$$

$$
\left.\left\{S_{\mathrm{M}}\left[g_{\mu \nu}, \Phi_{I}\right]-\left(\tau-\tau_{0}\right) \int d^{d} \mathbf{x} \sqrt{-g} \mathcal{O}_{d, \tau_{0}}^{[a, b]}\right\}\right|_{g=g(h)}=S_{\mathrm{M}, \tau}\left[h_{\mu \nu}, \Phi_{I}\right]
$$

In conclusion, we have the following dynamical equivalence:

$$
S_{\mathrm{G}, \kappa}\left[g_{\mu \nu}, \Gamma_{\mu \nu}^{\lambda}\right]+S_{\mathrm{M}}\left[g_{\mu \nu}, \Phi_{I}\right] \simeq S_{\mathrm{EH}}\left[h_{\mu \nu}, \Gamma_{\mu \nu}^{\lambda}\right]+S_{\mathrm{M}, \tau_{0}+\kappa}\left[h_{\mu \nu}, \Phi_{I}\right]
$$

Main objectives:

1) Study interesting modified gravity models \rightarrow Modified matter
2) Study interesting irrelevant deformations \rightarrow Modified gravity models

$T \bar{T}$-deformed Abelian gauge theory and Eddington-inspired Born-Infeld gravity

Consider the following modified gravity action:

$$
S_{\mathrm{EiBI}, \kappa}\left[g_{\mu \nu}, \Gamma_{\mu \nu}^{\lambda}\right]=\frac{1}{\kappa} \int \mathrm{~d}^{d} \mathbf{x}\left\{\sqrt{-\operatorname{det}\left[g_{\mu \nu}+\kappa \mathcal{R}_{(\mu \nu)}(\Gamma)\right]}-\lambda \sqrt{-g}\right\} \quad(\lambda=1)
$$

then

$$
\left.\left\{S_{\mathrm{M}}\left[g_{\mu \nu}, \Phi_{I}\right]+\int \mathrm{d}^{4} \mathbf{x} \sqrt{-g}\left[\frac{1}{\kappa}\left(1-\frac{\sqrt{-h_{\kappa}}}{\sqrt{-g}}\right)-\frac{1}{2} \operatorname{tr}\left[\mathbf{T}_{\tau_{0}}\right]\right]\right\}\right|_{g=g(h)}=S_{\mathrm{M}, \tau_{0}+\kappa}\left[h_{\kappa, \mu \nu}, \Phi_{I}\right]
$$

with

$$
\frac{\sqrt{-h_{\kappa}}}{\sqrt{-g}}=\sqrt{\operatorname{det}\left[\mathbf{1}-\kappa \mathbf{T}_{\tau_{0}}\right]}
$$

Using, as matter action:

$$
\mathcal{L}_{U(1)}\left(g_{\mu \nu}, A_{\mu}\right)=\mathcal{L}_{U(1)}\left(\operatorname{tr}\left[\mathbf{F}^{2}\right], \operatorname{tr}\left[\mathbf{F}^{4}\right]\right)
$$

We can find h :

$$
h_{\mu \nu}=g_{\mu \nu}+\left(\tau-\tau_{0}\right)\left[T_{\tau_{0}, \mu \nu}-\frac{1}{2} \operatorname{tr}\left[\mathbf{T}_{\tau_{0}}\right] g_{\mu \nu}\right] \quad \text { with } \quad\left(\tau-\tau_{0}\right)=\kappa
$$

and using the identity, valid in these degenerate cases:

$$
1-\frac{1}{2} \kappa \operatorname{tr}\left[\mathbf{T}_{\tau_{0}}\right]-\sqrt{\operatorname{det}\left[\mathbf{1}-\kappa \mathbf{T}_{\tau_{0}}\right]}=-\kappa^{2} \sqrt{\operatorname{det}\left[\mathbf{T}_{\tau_{0}}\right]}
$$

we get

$$
S_{\mathrm{EiBI}, \tau_{1}}+S_{U(1), \tau_{2}} \simeq S_{\mathrm{EH}}+S_{U(1), \tau_{1}+\tau_{2}} \simeq S_{\mathrm{EiBI}, \tau_{2}}+S_{U(1), \tau_{1}}
$$

$$
S_{\mathrm{EiBI}, \tau}+S_{U(1),-\tau} \simeq S_{\mathrm{EH}}+S_{U(1), 0}
$$

Starobinsky gravity

The modified gravity action is:

$$
S_{\mathrm{Star}, \kappa}\left[g_{\mu \nu}, \Gamma_{\mu \nu}^{\lambda}\right]=\int \mathrm{d}^{4} \mathbf{x} \sqrt{-g}\left(\frac{1}{2} \operatorname{tr}[\boldsymbol{\mathcal { R }}(\Gamma)]+\frac{\kappa}{4} \operatorname{tr}[\boldsymbol{\mathcal { R }}(\Gamma)]^{2}\right)
$$

The gravity equations for h, leads to:

$$
h_{\mu \nu}=g_{\mu \nu}-a\left(\tau-\tau_{0}\right) \operatorname{tr}\left[\mathbf{T}_{\tau_{0}}\right] g_{\mu \nu} \quad \text { with } \quad a\left(\tau-\tau_{0}\right)=\kappa
$$

Therefore the $T \bar{T}$-flow equation for the matter:

$$
\frac{\partial S_{\mathrm{M}, \tau}}{\partial \tau}=\frac{a}{d} \int d^{d} \mathbf{x} \sqrt{-g} \operatorname{tr}\left[\mathbf{T}_{\tau}\right]^{2}, \quad S_{\mathrm{M}, \tau_{0}}:=S_{\mathrm{M}}
$$

If we use as unperturbed action:

$$
\mathcal{L}\left(g_{\mu \nu}, \phi, A_{\mu}\right)=\mathcal{D}_{\mu} \Phi\left(\mathcal{D}^{\mu} \Phi\right)^{\dagger}-V\left(\Phi \Phi^{\dagger}\right)-\frac{1}{4} F_{\mu \nu} F^{\mu \nu}, \quad \mathcal{D}_{\mu}:=\partial_{\mu}-i A_{\mu}
$$

we get:

$$
\mathcal{L}_{\tau}\left(g_{\mu \nu}, \phi, A_{\mu}\right)=\frac{\mathcal{D}_{\mu} \Phi\left(\mathcal{D}^{\mu} \Phi\right)^{\dagger}+a \tau\left[\mathcal{D}_{\mu} \Phi\left(\mathcal{D}^{\mu} \Phi\right)^{\dagger}\right]^{2}}{1+4 a \tau V}-\frac{V}{1+4 a \tau V}-\frac{1}{4} F_{\mu \nu} F^{\mu \nu}
$$

which is in full agreement with results in the cosmology-literature. In addition we also have:

$$
S_{\mathrm{Star}, \tau}+S_{\mathrm{M}} \simeq S_{\mathrm{GR}}+S_{\mathrm{M}, \tau}
$$

Conclusions and further results

* All the results obtained are in full agreement with the cosmology-literature

1) We have explored the possibility to move $T \bar{T}$-like deformations, from matter to gravity and viceversa.
2) We have recovered two types of Modified Gravity Models:
a] The Eddington-inspired Born-Infeld theory ($a=2 / \mathbf{d}, \mathrm{b}=\mathbf{1}$)
b] The Starobinsky gravity ($\mathrm{a}=1, \mathrm{~b}=\mathbf{0}$)
c] Further results: root- $T \bar{T}$ deformation of the the 2 d "ghost-free massive gravity" discussed by Tolley and the Jackiw-Teitelboim related result by Dubovsky, Gorbenko, and Mirbabayi.
[Babaei-Aghbolagh, He, Morone, Ouyang, RT]

Thank you for your attention!

