$T \bar{T}$ deformations and integrable models

MPI2024 - MATRIX -Creswick

N. Brizio, A. Cavaglià, R. Conti, L. Iannella, T. Morone, S. Negro, J. Romano, P. Ceschin, I. Szécsényi

Initial motivation:

Understanding the Space of Quantum Field Theories

$\mathrm{CFT}:$
Operator and state content
Critical exponents and correlation functions

Massive integrable CFT perturbations:
Exact S-matrix

Finite-Size spectrum
(Thermodynamic Bethe ansatz)
Correlation Functions
(Form-Factors)

Exact S-matrix

Finite-Size spectrum
(Thermodynamic Bethe ansatz)

IR leading attracting operators

$$
\begin{gathered}
\text { In a CFT } \\
T_{x x}=-T_{y y}=-\frac{1}{2 \pi}(\bar{T}+T) \\
T_{y x}=T_{x y}=\frac{i}{2 \pi}(\bar{T}-T) \\
\text { and } \\
T \bar{T}(z, \bar{z})=T(z) \bar{T}(\bar{z})
\end{gathered}
$$

$$
(z=x+i y, \bar{z}=z-i y)
$$

Can we reverse the renormalisation group trajectory?

Let us try with the $T \bar{T}$ perturbation ...

We need the correct definition of $T \bar{T}$ outside a CFT fixed point:

$$
\begin{gathered}
T_{x x}=-\frac{1}{2 \pi}(\bar{T}+T-2 \Theta), T_{y y}=\frac{1}{2 \pi}(\bar{T}+T+2 \Theta), \quad T_{x y}=\frac{i}{2 \pi}(\bar{T}-T) \\
\text { Sasha Zamolodchikov (2004): } \\
\mathrm{T} \overline{\mathrm{~T}}(z, \bar{z}):=\lim _{(z, \bar{z}) \rightarrow\left(z^{\prime}, \bar{z}^{\prime}\right)} T(z, \bar{z}) \bar{T}\left(z^{\prime}, \bar{z}^{\prime}\right)-\Theta(z, \bar{z}) \Theta\left(z^{\prime}, \bar{z}^{\prime}\right)+\text { total derivatives }
\end{gathered}
$$

"4. (L) CFT limit at short distances. I will assume that the short-distance behavior of the field theory is governed by a conformal field theory ... Here I just mention that this assumption is needed in order to make definition of the composite field $T \bar{T}$ essentially unambiguous."

Therefore, up to total derivatives

$$
T \bar{T}(z, \bar{z}):=-\pi^{2} \operatorname{det}\left(T_{\mu \nu}(z, \bar{z})\right)
$$

The $T \bar{T}$ Lagrangian flow equation is:

$$
\left\{\begin{array}{l}
\partial_{\tau} \mathscr{L}(\tau)=\operatorname{det}\left(T_{\mu \nu}(\tau)\right) \\
T_{\mu \nu}(\tau)=\frac{-2}{\sqrt{g}} \frac{\partial \mathscr{L}(\tau)}{\partial g^{\mu \nu}}
\end{array}\right.
$$

$$
\partial_{\tau} \mathscr{H}(\tau)=\operatorname{det}\left(T^{\mu \nu}(\tau)\right)
$$

Example: bosons with generic potential

$$
\mathscr{L}^{V}(0)=\mathscr{L}(0)-V \quad \text { with } \quad \mathscr{L}(0)=\partial \vec{\phi} \cdot \bar{\partial} \vec{\phi}, V=V(\vec{\phi})
$$

$$
\mathscr{L}^{V}(\tau)=\frac{-V}{1+\tau V}+\frac{1}{2 \bar{\tau}}\left(-1+\sqrt{1+4 \bar{\tau} \mathscr{L}(0)-4 \bar{\tau}^{2} \mathscr{B}}\right)
$$

with $\quad \bar{\tau}=\tau(1+\tau V)$
and $\quad \mathcal{B}=|\partial \vec{\phi} \times \bar{\partial} \vec{\phi}|^{2}$

A local change of coordinates

$$
\begin{gathered}
\mathcal{J}^{-1}=\left(\begin{array}{cc}
\partial_{w} z & \partial_{w} \bar{z} \\
\partial_{\bar{w}} z & \partial_{\bar{w}} \bar{z}
\end{array}\right)=\left(\begin{array}{cc}
1+\tau V & -\tau\left(\frac{\partial \phi}{\partial w}\right)^{2} \\
-\tau\left(\frac{\partial \phi}{\partial \bar{w}}\right)^{2} & 1+\tau V
\end{array}\right) \\
\left(w=y^{1}+i y^{2}, \bar{w}=y^{1}-i y^{2}\right) \\
\phi^{(\tau)}(\mathbf{z})=\phi^{(0)}(\mathbf{w}(\mathbf{z})), \quad \mathbf{z}=(z, \bar{z}), \quad \mathbf{w}=(w, \bar{w}) \\
\partial\left(\frac{\bar{\partial} \phi}{S}\right)+\bar{\partial}\left(\frac{\partial \phi}{S}\right)=-\frac{V^{\prime}}{4 S}\left(\frac{S+1}{1+\tau V}\right)^{2} \\
S=\sqrt{1+4 \tau(1+\tau V) \partial \phi \bar{\partial} \phi}
\end{gathered}
$$

The deformed sine-Gordon breather

The shock-wave phenomenon and the Hagedorn-type critical point

Figure 5. The kink solution to the $T \bar{T}$-deformed sG model on a cylinder of radius R (a) and the corresponding energies as functions of $R(\mathrm{~b})$.

Generic $T \bar{T}$-deformed models
$\mathcal{J}^{-1}=\left(\begin{array}{cc}\partial_{w} z & \partial_{w} \bar{z} \\ \partial_{\bar{w}} z & \partial_{\bar{w}} \bar{z}\end{array}\right)=\left(\begin{array}{cc}1+\tau V & -\tau\left(\frac{\partial \phi}{\partial w}\right)^{2} \\ -\tau\left(\frac{\partial \phi}{\partial \bar{w}}\right)^{2} & 1+\tau V\end{array}\right) \quad \longrightarrow\left(\begin{array}{cc}1-\tau \Theta(\mathbf{w}) & -\tau \bar{T}(\mathbf{w}) \\ -\tau T(\mathbf{w}) & 1-\tau \Theta(\mathbf{w})\end{array}\right)$

Notice that:

$$
\frac{\partial^{2} x^{\mu}}{\partial y^{\rho} \partial y^{\sigma}}=\frac{\partial^{2} x^{\mu}}{\partial y^{\sigma} \partial y^{\rho}} \quad \Longleftrightarrow \quad \partial_{\mu} \mathbf{T}_{\nu}^{\mu}=0
$$

$$
\mathbf{g}_{\mu \nu}^{\prime}=\delta_{\mu \nu}-\tau \epsilon_{\mu \rho} \epsilon_{\nu}^{\sigma}\left(2 T+\tau T^{2}\right)_{\sigma}^{\rho}
$$

$$
\begin{aligned}
\mathcal{A}[\phi] & =\int d z d \bar{z} \mathcal{L}^{(\tau)}(\mathbf{z})=\int d w d \bar{w}\left|\operatorname{det}\left(\mathcal{J}^{-1}\right)\right| \mathcal{L}^{(\tau)}(\mathbf{z}(\mathbf{w})) \\
& =\int d w d \bar{w}\left(\mathcal{L}^{(0)}(\mathbf{w})+\tau \mathrm{T}^{(0)}(\mathbf{w})\right)
\end{aligned}
$$

Further alternative geometric intrepretations

1) There exists a random geometry interpretation of the $T \bar{T}$ deformation of quantum field theory [Cardy]
$e^{2 \delta t \int_{\mathcal{D}} \epsilon_{i k} \epsilon_{j l} T^{i j} T^{k l} d^{2} x} \propto \int[d h] e^{-(1 / 8 \delta t) \iint_{\mathcal{D}} \epsilon^{i k} \epsilon^{j l} h_{i j} h_{k l} d^{2} x+\int_{\mathcal{D}} h_{i j} T^{i j} d^{2} x}$
(Hubbard-Stratonovich transformation)
2) Any $T \bar{T}$-deformed field theory is dynamically equivalent to its associated unperturbed theory coupled to (flat) Jackiw-Teitelboim gravity [Dubovsky-Gorbenko-Mirbabayi].

$$
S_{\mathrm{M}, \tau} \simeq S_{\mathrm{M}}+\int \mathrm{d}^{2} \mathbf{x} \sqrt{-g}\left(\varphi R-\Lambda_{2}\right) \quad \tau \propto \Lambda_{2}^{-1}
$$

3) The $T \bar{T}$ deformation of a generic field theory is equivalent to coupling the undeformed field theory to 2D 'ghost-free massive gravity' [Tolley].

$$
S_{T \bar{T}}[\varphi, f, e]=\int \mathrm{d}^{2} x \frac{1}{2 \lambda} \epsilon^{\mu \nu} \epsilon_{a b}\left(e_{\mu}^{a}-f_{\mu}^{a}\right)\left(e_{\nu}^{b}-f_{\nu}^{b}\right)+S_{0}[\varphi, e] \quad \lambda \propto \tau
$$

Quantum $T \bar{T}$-deformations on infinite cylinder of circumference \mathbf{R}

$$
\partial_{\tau} \mathscr{H}(\tau)=\operatorname{det}\left(T_{\mu \nu}(\tau)\right) \rightarrow \partial_{\tau}\langle n| \mathscr{H}(\tau)|n\rangle=\langle n| \operatorname{det}\left(T_{\mu \nu}(\tau)\right)|n\rangle
$$

Using Zamolodchikov factorisation property:

$$
\langle n| \operatorname{det}\left(T_{\mu \nu}(\tau)\right)|n\rangle=\langle n| T_{11}|n\rangle\langle n| T_{22}|n\rangle-\langle n| T_{12}|n\rangle\langle n| T_{21}|n\rangle
$$

with

$$
E_{n}(R, \tau)=-R\langle n| T_{22}|n\rangle, \partial_{R} E_{n}(R, \tau)=-\langle n| T_{11}|n\rangle, P_{n}(R)=-\dot{\mathrm{i}} R\langle n| T_{12}|n\rangle
$$

and

$$
P(R, \tau)=P(R)=\frac{2 \pi k}{R}, \quad k \in \mathbb{Z}
$$

The inviscid Burgers equation for the quantum spectrum

$$
\partial_{\tau} E_{n}(R, \tau)=E_{n}(R, \tau) \partial_{R} E_{n}(R, \tau)+\frac{P_{n}^{2}(R)}{R}
$$

$$
P_{n}=0 \rightarrow E_{n}(R, \tau)=E_{n}\left(R+\tau E_{n}(R, \tau), 0\right)
$$

A possible quantum interpretation:

Point particles \longrightarrow Finite size particles

$$
\begin{aligned}
& H=-\sum_{j=1}^{N} \frac{\partial^{2}}{\partial x_{j}^{2}}+\sum_{i<j}^{N} v\left(x_{i}-x_{j}\right) \\
& v(x)= \begin{cases}\infty, & \text { for }|x|<a \\
0, & \text { for }|x|>a\end{cases}
\end{aligned}
$$

[Y. Jiang]

(Typical $\tau=0$ finite-volume spectrum)

$$
E(R, 0) \sim-\pi \frac{c_{\mathrm{eff}}}{6 R}, \quad R \sim 0
$$

$$
c_{e f f}=c-24 \Delta
$$

$\operatorname{Re}(E)$

The Conformal Field Theory case

The total energy is:
[Dubovsky-Flauger-Gorbenko 2012, Caselle-Gliozzi-Fioravanti-Tateo 2013]

$$
\begin{gathered}
E(R, \tau)=E^{(+)}(R, \tau)+E^{(-)}(R, \tau) \\
=-\frac{R}{2 \tau}+\sqrt{\frac{R^{2}}{4 \tau^{2}}+\frac{2 \pi}{\tau}\left(n_{0}+\bar{n}_{0}-\frac{c_{\mathrm{eff}}}{12}\right)+\left(\frac{2 \pi\left(n_{0}-\bar{n}_{0}\right)}{R}\right)^{2}} \\
c_{e f f}=c-24 \Delta \quad \text { (primary) }
\end{gathered}
$$

which matches the form of the $\left(\mathrm{D}=26, c_{\text {eff }}=24\right)$ Nambu Goto spectrum, for a generic CFT.

Notice that there are spectral singularities connecting the two branches. The most evident being the tachyonic critical point at

$$
R_{c r}=\sqrt{\frac{2 \pi c \tau}{3}}
$$

From the point of view of a QFT at finite temperature $T=1 / R$, this critical point is consequence of an exponential growth of the degeneracy of the energy levels at large energy E

Consider the degeneracy of a free (massless) fermionic system on a circle, with $c=1 / 2$ and circumference $L \rightarrow \infty$

The asymptotic behaviour of the level degeneracy for large $n_{0}=\bar{n}_{0}=n$ is

$$
\begin{gathered}
\rho(n)=\frac{1}{16 \sqrt{3 n^{3}}} e^{2 \pi \sqrt{n / 3}}=\rho(E) \frac{d E}{d n}=3\left(\frac{\pi T_{H}}{3 E}\right)^{3} e^{E / T_{H}} \quad \text { we used: } T_{H}=\sqrt{\frac{3}{\pi \tau}}, E(n) \simeq \sqrt{4 \pi n / \tau} \\
\delta S(E)=\frac{\delta E}{T} \rightarrow T(E)=\frac{1}{\partial_{E} S(E)}, \quad S=\log \rho(E)
\end{gathered}
$$

indeed, T_{H} coincides with the upper limit temperature of the system:

$$
T_{H}=\sup (T(E))
$$

Comparing this result with the tachyonic singularity at $R_{c r}$ we obtain:

$$
R_{c r}=1 / T_{H}
$$

Exact S-matrix and CDD ambiguity

Consider a relativistic integrable field theory with factorised scattering:

Castillejo-Dalitz-Dyson ambiguity:

$$
S_{i j}^{k l}(\theta) \rightarrow S_{i j}^{k l}(\theta) e^{i \delta_{i j}^{(\tau)}(\theta)}
$$

The simplest possibility, consistent with the crossing and unitarity relations is:

$$
\delta_{i j}^{(\tau)}(\theta)=\delta^{(\tau)}\left(m_{i}, m_{j}, \theta\right)=\tau m_{i} m_{j} \sinh (\theta)
$$

Burgers equation from integrability

[Klümper-Batchelor-Pearce, 1991][Destri-DeVega, 1992]

The finite-size properties of the sine-Gordon model are encoded in the single counting function $f(\theta)$, solution to the following nonlinear integral equation:

$$
\begin{aligned}
f(\theta)= & -i m R \sinh (\theta)+i \alpha \\
& -\int_{\mathcal{C}_{1}} d y \mathcal{K}(\theta-y) \ln \left(1+e^{-f(y)}\right)+\int_{\mathcal{C}_{2}} d y \mathcal{K}(\theta-y) \ln \left(1+e^{f(y)}\right)
\end{aligned}
$$

where

$$
\begin{gathered}
\mathcal{K}(\theta)=\frac{1}{2 \pi i} \partial_{\theta} \ln S_{s G}(\theta) \\
E(R)=m\left[\int_{\mathcal{C}_{1}} \frac{d y}{2 \pi i} \sinh (y) \ln \left(1+e^{-f(y)}\right)-\int_{\mathcal{C}_{2}} \frac{d y}{2 \pi i} \sinh (y) \ln \left(1+e^{f(y)}\right)\right] \\
P(R)=m\left[\int_{\mathcal{C}_{1}} \frac{d y}{2 \pi i} \cosh (y) \ln \left(1+e^{-f(y)}\right)-\int_{\mathcal{C}_{2}} \frac{d y}{2 \pi i} \cosh (y) \ln \left(1+e^{f(y)}\right)\right]
\end{gathered}
$$

replacing

$$
\mathcal{K}(\theta) \rightarrow \mathcal{K}(\theta)-\frac{1}{2 \pi} \partial_{\theta} \delta_{C D D}(\theta)=\mathcal{K}(\theta)-\tau \frac{m^{2}}{2 \pi} \cosh (\theta)
$$

we get

$$
\begin{aligned}
f(\theta)= & -i m \mathcal{R}_{0} \sinh \left(\theta-\theta_{0}\right)+i \alpha \\
& -\int_{\mathcal{C}_{1}} d y \mathcal{K}(\theta-y) \ln \left(1+e^{-f(y)}\right)+\int_{\mathcal{C}_{2}} d y \mathcal{K}(\theta-y) \ln \left(1+e^{f(y)}\right)
\end{aligned}
$$

with
$\sinh \theta_{0}=\frac{\tau P(R)}{\mathcal{R}_{0}}=\frac{\tau P\left(\mathcal{R}_{0}\right)}{R}, \cosh \theta_{0}=\frac{R+\tau E(R, \tau)}{\mathcal{R}_{0}}=\frac{\mathcal{R}_{0}-\tau E\left(\mathcal{R}_{0}, 0\right)}{R} \quad P(R, \tau)=P(R)=\frac{2 \pi k}{R}, \quad k \in \mathbb{Z}$.

Then

$$
f(\theta \mid R, \tau)=f\left(\theta-\theta_{0} \mid \mathcal{R}_{0}, 0\right)
$$

which allows to compute the exact form of the τ-deformed energy level once its R -dependence is known at $\tau=0$. The result is:

$$
\binom{E(R, \tau)}{P(R)}=\left(\begin{array}{cc}
\cosh \left(\theta_{0}\right) & \sinh \left(\theta_{0}\right) \\
\sinh \left(\theta_{0}\right) & \cosh \left(\theta_{0}\right)
\end{array}\right)\binom{E\left(\mathcal{R}_{0}, 0\right)}{P\left(\mathcal{R}_{0}\right)}
$$

therefore

$$
E^{2}(R, \tau)-P^{2}(R)=E^{2}\left(\mathcal{R}_{0}, 0\right)-P^{2}\left(\mathcal{R}_{0}, 0\right)
$$

with

$$
\mathcal{R}_{0}^{2}=(R+\tau E(R, \tau))^{2}-\tau^{2} P^{2}(R), R^{2}=\left(\mathcal{R}_{0}-\tau E\left(\mathcal{R}_{0}, 0\right)\right)^{2}-\tau^{2} P^{2}\left(\mathcal{R}_{0}\right)
$$

It is then possible to prove that this sets of constraints are equivalent to the Burgers equation!

ModMax and the $\sqrt{T \bar{T}}$ deforming operators

Consider the recent results on the Modified Maxwell Theory [Bandos-Lechner-Sorokin-Townsend 2020]

$$
\mathcal{L}_{\gamma}^{\mathrm{MM}}=\cosh (\gamma) S-\sinh (\gamma) \sqrt{S^{2}-P^{2}}
$$

where

$$
S:=\frac{1}{4} F_{a b} F^{a b}, \quad P:=\frac{1}{4} \widetilde{F}_{a b} F^{a b}=\sqrt{\operatorname{det}[\mathbf{F}]}
$$

-The unique nonlinear extension of the source-free Maxwell theory preserving both the electromagnetic duality invariance and conformal invariance-

$$
\frac{\partial \mathcal{L}_{\gamma}^{\mathrm{MM}}}{\partial \gamma}=\frac{1}{2} \sqrt{\operatorname{tr}\left[\left(\mathbf{T}_{\gamma}^{\mathrm{MM}}\right)^{2}\right]-\frac{1}{4} \operatorname{tr}\left[\mathbf{T}_{\gamma}^{\mathrm{MM}}\right]^{2}}
$$

[Conti-Negro-RT, Ferko-Sfondrini-Smith-Tartaglino Mazzucchelli, Babaei Aghbolagh, Babaei Velni, Mahdavian Yekta, Mohammadzadeh].

A novel classically marginal deformation in 2 d , was recently introduced, and denoted root- $T \bar{T}$

$$
\frac{\partial \mathcal{L}_{\gamma}}{\partial \gamma}=-\frac{1}{\sqrt{2}} \sqrt{\operatorname{tr}\left[\left(\mathbf{T}_{\gamma}\right)^{2}\right]-\frac{1}{2} \operatorname{tr}\left[\mathbf{T}_{\gamma}\right]^{2}}
$$

it commutes with the $T \bar{T}$

$$
\frac{\partial^{2} \mathcal{L}_{\tau, \gamma}}{\partial \tau \partial \gamma}=\frac{\partial^{2} \mathcal{L}_{\tau, \gamma}}{\partial \gamma \partial \tau}
$$

Finally, it corresponds to a change metric, but not to a global change of coordinates

Thank you for your attention!

