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Initial motivation: 

Understanding the Space of Quantum Field Theories 

CFTIR

CFTUV

massless
massive

CFT:   
Operator and state content

Critical exponents and correlation functions

Massive integrable CFT perturbations:
Exact S-matrix

Finite-Size spectrum 
(Thermodynamic Bethe ansatz)

Correlation Functions 
(Form-Factors)
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Massless integrable CFT perturbations:

Exact S-matrix

Finite-Size spectrum 
(Thermodynamic Bethe ansatz)

IR leading attracting operators
 

Ising CFT

ordered

disordered 
Tricritical Ising 

CFT

first order p.t

TT̄ + …

TT̄(z, z̄) = T(z)T̄(z̄)

Txx = − Tyy = −
1

2π
(T̄ + T)

Tyx = Txy =
i

2π
(T̄ − T)

In a CFT

and 

(z = x + iy, z̄ = z − iy)



 

  

 

CFTIR

??

4

Can we reverse the renormalisation group trajectory?

CFTIR

CFTUV

Let us try with the   perturbation …TT̄
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We need the correct definition of  outside a CFT fixed point:  TT̄

Txx = −
1

2π
(T̄ + T − 2Θ) , Tyy =

1
2π

(T̄ + T + 2Θ) , Txy =
i

2π
(T̄ − T) .

Sasha Zamolodchikov (2004): 

TT̄(z, z̄) := − π2 det(Tμν(z, z̄))

Therefore,  up to total derivatives

“4. (L) CFT limit at short distances. I will assume that the short-distance behavior of the field theory is 
governed by a conformal field theory … Here I just mention that this assumption is needed in order to make 
definition of the composite field  essentially unambiguous.”TT̄
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The   Lagrangian flow equation is:TT̄

∂τℒ(τ) = det(Tμν(τ)) ,

Tμν(τ) =
−2

g
∂ℒ(τ)
∂gμν

,

for the Ricci tensor and

�R = Rab �⌘
ab + ⌘

ab
�Rab =

4

d
�⌧ (rd� r � 1) @a@

atr[T⌧ ] , (2.23)

for the scalar curvature. In (2.22) and (2.23) we used the additional constraint

@
a bT⌧,ab = r @btr[T⌧ ] , (2.24)

coming from the conservation of the stress-energy tensor in flat space, i.e. @aT
ab
⌧ = 0. From

(2.23) it follows that

�R = 0 () r =
1

d� 1
. (2.25)

Let us consider separately the cases d = 2 and d > 2.

• case d > 2: from (2.21), it emerges that the deformation of the Riemann tensor depends
on the field configuration through the stress-energy tensor and it is,in general, non-
vanishing. Therefore, we conclude that the deformation induced by (1.3) modifies the
geometry of the space in a non-trivial way for d > 2.

• case d = 2: in this case the Riemann tensor has only one independent component, i.e.
the scalar curvature R. From (2.25) it follows that the operator O[r,2]

⌧ modifies the
geometry of the space for any r 6= 1. The case r = 1 is special and corresponds to the
TT operator OTT

⌧ = O[1,2]
⌧ which does not affect the geometry, in agreement with the

existence of a coordinate transformation.

3 Metric flow equation

In this section, we derive a system of differential equations that completely defines the flow of
the metric. Moreover, we develop a perturbative algorithm to find a power series expansion
for the solution to the metric flow equation.

The equivalence (2.20) leads to the following system of differential equations,
8
>><

>>:

dgµ⌫
ds

=
4

d

bTs,µ⌫

@T
µ⌫
s

@s
=

�2

d
p
g

@

@gµ⌫

⇣p
g bTs,⇢�T

⇢�
s

⌘ , (3.1)

where the second equation descends from (1.2) and (1.4). Using the properties

@g

@gµ⌫
= g g

µ⌫
, (3.2)

and
@ bTs,µ⌫

@g⇢�
= r

�
�
⇢
µ�

�
⌫ tr[Ts] + gµ⌫T

⇢�
s

�
� �

⇢
µT

�
s,⌫ � �

⇢
⌫T

�
s,µ + fµ⌫↵�

@T
↵�
s

@g⇢�
, (3.3)
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6.3 The deformed Lagrangian 65

Figure 6.1: TT̄ flow in the space of 2d quantum field theories. The point ⌧ = 0 corre-

sponds to the undeformed IR theory. As we increase ⌧ , we move from IR to UV

The evolution along this trajectory is triggered by the operator detTµ⌫(⌧)

L
(⌧+�⌧) = L

(⌧) + �⌧ detT (⌧)
µ⌫

= L
(⌧)

�
�⌧

⇡2
TT̄. (6.9)

In two-dimensional quantum field theory, the composite operator TT̄ is built from the

chiral components T and T̄ of the energy-momentum tensor Tµ⌫ .

From chapter 3 we know that a point z in a 2d space with Euclidean signature can

be labeled using Cartesian coordinates (x, y) as well as complex coordinates (z, z̄).

Following the convention in CFT, the chiral components of the energy-momentum

tensor are defined, recalling definitions 3.23, as

Tzz =
1

4
(Txx � Tyy � 2iTxy),

Tz̄z̄ =
1

4
(Txx � Tyy + 2iTxy),

Tzz̄ =
1

4
(Txx + Tyy).

(6.10)

These are the standard conventions:

T = �2⇡Tzz T̄ = �2⇡Tz̄z̄ ⇥ = 2⇡Tzz̄. (6.11)

Therefore the TT̄ operator is given by

TT̄ = �⇡2detTµ⌫ = �⇡2(TxxTyy � T 2
xy
) = 4⇡2(TzzTz̄z̄ � T 2

zz̄
) = T T̄ �⇥2. (6.12)

The notation TT̄ is used to denote the composite operator. In general this is different

from the quantity T T̄ , which is a redefinition of its components. They coincide only if

∂τℋ(τ) = det(Tμν(τ))
(Euclidean space-time)



ℒV(τ) =
−V

1 + τ V
+

1
2τ̄ (−1 + 1 + 4τ̄ℒ(0) − 4τ̄2 ℬ)

τ̄ = τ (1 + τV)with
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discussed in Section 4.

If the boundary conditions at ⌧ = 0 are the energy levels of a CFT, i.e. of the form:

E(R, 0) =
A

R
, (2.10)

the general solution to (2.1) is

E(R, ⌧) =
R

2⌧

 
�1 +

r
1 +

4⌧

R2
A+

4⌧2

R2
P 2(R)

!
=

R

2⌧

 
�1 +

r
1 +

4⌧

R2
A+

4⌧2

R4
(2⇡k)2

!
.

(2.11)

The consequence, on the latter expression, of an additional bulk term in the unperturbed

energy (2.10),

E(R, 0) =
A

R
+ F0R , (2.12)

was considered in [7]. Imposing the initial condition (2.12), the solution to (2.1) becomes:

E(R, ⌧) =
F0R

1� ⌧ F0
+

R

2⌧̃

 
�1 +

r
1 +

4⌧̃

R2
A+

4⌧̃2

R2
P 2(R)

!
, (2.13)

with ⌧̃ = ⌧(1� ⌧F0), that is a reparametrization �En(R, ⌧) ! �En(R, ⌧̃) of the perturbing

parameter ⌧ in the energy di↵erences �En(R, ⌧) = En(R, ⌧)� E0(R, ⌧).

Furthermore, it was argued in [7] that (2.1) is equivalent, up to total derivative terms, to the

following fundamental equation for the Lagrangian :

@⌧L(⌧) = det[Tµ⌫(⌧)] , TT̄(⌧) = �⇡2det[Tµ⌫(⌧)] , (2.14)

with µ, ⌫ 2 {1, 2} and Euclidean coordinates (x1, x2). By solving perturbatively (2.14) with

initial condition

L(~�, 0) = @~� · @̄~� , ~� = (�1(z, z̄), . . . ,�N (z, z̄)) , (2.15)

it was proved in [13] that the deformed Lagrangian L(~�, ⌧) coincides with the bosonic Born-

Infeld model or, equivalently, the Nambu-Goto Lagrangian in the static gauge:

L(~�, ⌧) = 1

2⌧

✓
�1 +

q
1 + 4⌧L(~�, 0)� 4⌧2B

◆
=

1

2⌧

✓
�
q
det[⌘µ⌫ ] +

q
det [⌘µ⌫ + ⌧ hµ⌫ ]

◆
,

(2.16)

with hµ⌫ = @µ~� · @⌫~� and

B = |@~�⇥ @̄~�|2 = �1

4
det [hµ⌫ ] . (2.17)

Here, we would like to extend the result (2.16) to generic interacting bosonic Lagrangians of

the form:

LV (~�, 0) = @~� · @̄~�+ V (~�) , (2.18)

where V (~�) is a generic derivative-independent potential. Instead of solving (2.14) using a

perturbative brute-force approach, as in [13], we proceed by postulating that the evident
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and

Example: bosons with generic potential 

ℒV(0) = ℒ(0) − V with ℒ(0) = ∂ ⃗ϕ ⋅ ∂̄ ⃗ϕ , V = V( ⃗ϕ )



A local change of coordinates
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2∂w∂w̄ϕ = − V′￼

(z = x1 + ix2, z̄ = x1 − ix2)

(w = y1 + iy2, w̄ = y1 − iy2)

∂ ( ∂̄ϕ
S ) + ∂̄ ( ∂ϕ

S ) = −
V′￼

4S ( S + 1
1 + τV )

2

3.1 From the deformed to the undeformed model through a local change of

coordinates

Thus we have inferred that there must exist a coordinate system w = (w1(z), w2(z)) =

(w(z), w̄(z)) in which the matrices g
TT̄
µ⌫ and d

TT̄
µ⌫ assume the same form as g

sG
µ⌫ and d

sG
µ⌫ ,

respectively. In formulae

g
sG
µ⌫dw

µ
dw

⌫ = g
TT̄
µ⌫ dz

µ
dz

⌫ =) g
sG
µ⌫

dw
µ

dz⇢

dw
⌫

dz�
= g

TT̄
⇢� , (3.15)

d
sG
µ⌫dw

µ
dw

⌫ = d
TT̄
µ⌫ dz

µ
dz

⌫ =) d
sG
µ⌫

dw
µ

dz⇢

dw
⌫

dz�
= d

TT̄
⇢� . (3.16)

It is now a matter of simple algebraic manipulations to obtain the following equations for the

new coordinates

@w =
(S + 1)2

4S (1� ⌧V )
, @̄w̄ =

(S + 1)2

4S (1� ⌧V )
, (3.17)

@̄w =
⌧

S

�
@̄�
�2

, @w̄ =
⌧

S
(@�)2 . (3.18)

Let us now use the latter relations to find the partial derivatives of the field � in the coordinates

w:  
@�

@̄�

!
= J

 
@�/@w

@�/@w̄

!
, J =

 
@w @w̄

@̄w @̄w̄

!
. (3.19)

The result is

@� =
1

1� ⌧ (K + V )

@�

@w
, @̄� =

1

1� ⌧ (K + V )

@�

@w̄
, (3.20)

where we have defined the following function

K =
@�(w)

@w

@�(w)

@w̄
. (3.21)

With the help of (3.20), we can now find the expression for S in the coordinates w

S =
q
1 + 4⌧ (1� ⌧V ) @�@̄� =

1 + ⌧ (K � V )

1� ⌧ (K + V )
. (3.22)

We can then write the Jacobian matrix J and its inverse J �1 in terms of w as

J =

 
@w @w̄

@̄w @̄w̄

!
=

1

(1� ⌧V )2 � ⌧2K2

0

@
1� ⌧V ⌧

⇣
@�
@w

⌘2

⌧

⇣
@�
@w̄

⌘2
1� ⌧V

1

A ,

J �1 =

 
@wz @wz̄

@w̄z @w̄z̄

!
=

0

@
1 + ⌧V �⌧

⇣
@�
@w

⌘2

�⌧

⇣
@�
@w̄

⌘2
1 + ⌧V

1

A . (3.23)
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S = 1 + 4τ(1 + τV)∂ϕ∂̄ϕ
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τ > 0

τ < 0The deformed 
sine-Gordon breather
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τ = 0 , κ = 10-5

-10 -5 5 10 x

-10

-5

5

10

ϕ

(a) (b)

Figure 2: The general solution (3.19) for the undeformed (a) and the deformed (b) theory,

for small values of .

fulfills 8
>>>><

>>>>:

@� (z, z) =
2↵ sin

⇣
�(z,z)

2

⌘

1� 4⌧ + 4⌧ cos (� (z, z))
,

@� (z, z) =

2
↵ sin

⇣
�(z,z)

2

⌘

1� 4⌧ + 4⌧ cos (� (z, z))
.

(3.21)

Since the TT̄ perturbation does not spoil integrability, it is tempting to identify (3.21) as

the first-step Bäcklund transformation from the vacuum solution. Unfortunately, equations

(3.21) do not contain much information about integrability, and the complete form of the

Bäcklund transformation is expected to be very complicated. A first, more concrete, step

toward a fully satisfactory understanding of the classical integrability of this system will be

taken in Section 3.2 below, where the Lax operators are explicitly constructed. Finally, let

us conclude this Section with a brief discussion on the more complicated examples within the

family of solutions (3.19). Without much loss in generality we consider only the stationary

(� = 0, ↵ = 1) cases. At ⌧ = 0, equation (3.19) reduces to:

x (�) = k ±
F
⇣
�
2 |�

1


⌘

p


�! � (x) = ±2am

✓p
 (x� k)

����
1



◆
, (3.22)

where am
⇣
x
���k
⌘
is the amplitude of Jacobi elliptic function, they correspond to staircase type

solutions, see Figure 2. At ⌧ 6= 0 they display a deformed shape similar to that observed for

the single kink solution, with a shock-wave singularities at ⌧ ' 1/8.
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τ = 0 , κ = 10-5
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Figure 2: The general solution (3.19) for the undeformed (a) and the deformed (b) theory,

for small values of .

fulfills 8
>>>><

>>>>:

@� (z, z) =
2↵ sin

⇣
�(z,z)

2

⌘

1� 4⌧ + 4⌧ cos (� (z, z))
,

@� (z, z) =

2
↵ sin

⇣
�(z,z)

2

⌘

1� 4⌧ + 4⌧ cos (� (z, z))
.

(3.21)

Since the TT̄ perturbation does not spoil integrability, it is tempting to identify (3.21) as

the first-step Bäcklund transformation from the vacuum solution. Unfortunately, equations

(3.21) do not contain much information about integrability, and the complete form of the

Bäcklund transformation is expected to be very complicated. A first, more concrete, step

toward a fully satisfactory understanding of the classical integrability of this system will be

taken in Section 3.2 below, where the Lax operators are explicitly constructed. Finally, let

us conclude this Section with a brief discussion on the more complicated examples within the

family of solutions (3.19). Without much loss in generality we consider only the stationary

(� = 0, ↵ = 1) cases. At ⌧ = 0, equation (3.19) reduces to:

x (�) = k ±
F
⇣
�
2 |�

1


⌘

p


�! � (x) = ±2am

✓p
 (x� k)

����
1



◆
, (3.22)

where am
⇣
x
���k
⌘
is the amplitude of Jacobi elliptic function, they correspond to staircase type

solutions, see Figure 2. At ⌧ 6= 0 they display a deformed shape similar to that observed for

the single kink solution, with a shock-wave singularities at ⌧ ' 1/8.
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The shock-wave phenomenon and the Hagedorn-type critical point 
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1 2 3 4 5 6
x

1

2

3

4

5

6

ϕ(x)

τ= 1
4

τ= 1
8

τ= 1
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τ=0

τ=- 1
16

τ=- 1
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τ=- 1
4

(a)
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R0
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E(R)

τ= 1
4

τ= 1
8

τ= 1
16

τ=0

τ=- 1
16

τ=- 1
8

τ=- 1
4

(b)

Figure 5. The kink solution to the TT̄-deformed sG model on a cylinder of radius R (a) and the
corresponding energies as functions of R (b).

To find the behavior of E(⌧) as a function of R close to the branch singularity Rc, we first

expand R and E
(⌧) in powers of the small quantity " = ⇢+ 4⌧

R�Rc =
Rc

128⌧2 (1� 4⌧)
"
2 +O("3) ,

E
(⌧) � E

(⌧)
c =

Rc

16⌧2 (1� 4⌧)
"+O("2) , (6.19)

then, removing ", one finds

E
(⌧) � E

(⌧)
c = ±

p
Rc

⌧
p
2� 8⌧

p
R�Rc +O (R�Rc) , (6.20)

which gives a square root branch point at Rc for the energy.

Now we would like to briefly discuss the e↵ect of the shock-wave singularities of the deformed

solution on the Hamiltonian density. To compute the range of values of ⌧ where the solution

becomes multi-valued, we first identify the zeros of Det
�
J �1

�
:

Det
�
J �1

�
= 0 () x =

p
⇢

2
dn�1

 
±
r

⇢+ 4⌧

8⌧
� ⇢

!
, (6.21)

where dn�1(z |�) is the inverse of the Jacobi elliptic function dn(z |�). From the reality

properties of dn�1(z |�) it follows that x is real for

⇢ > 0 ^ ⌧
⇤
1 =

⇢

4 + 8⇢
< ⌧ <

⇢

4
= ⌧

⇤
2 , (6.22)

– 20 –



and thus the metric, in the set of coordinates y, is

g
0
µ⌫ =

@x
⇢

@yµ

@x
�

@y⌫
g⇢� = �µ⌫ � ⌧✏µ⇢✏

�
⌫

�
2T + ⌧T

2
�⇢

�
, (4.10)

where we used the fact that g⇢� = �⇢�. Translating the first expression of (4.4) in z coordinates

and then moving to Euclidean coordinates, one obtains the inverse relation of (4.8)

@y
µ

@x⌫
= �

µ
⌫ + ⌧

� eT (⌧)
�µ

⌫
(x) ,

� eT (⌧)
�µ

⌫
(x) = �✏

µ
⇢✏

�
⌫

�
T
(⌧)

�µ
⌫
(x) , (4.11)

where
�
T
(⌧)

�µ
⌫
(x) is the stress energy tensor of the deformed theory.

Finally let us conclude this section with a couple of remarks:

• Consider the transformation of the Lagrangian7 (4.1) under the on-shell map (4.4)

L(⌧)
N (z(w)) =

L(0)
N (w) + ⌧

⇣
(KN )2 � V

2
⌘

1� 2⌧V � ⌧2
⇣
(KN )2 � V 2

⌘ . (4.13)

Using the latter expression together with

Det
�
J �1
N

�
= Det (JN )�1 = 1� 2⌧V � ⌧

2
⇣
(KN )2 � V

2
⌘

, (4.14)

we find that the action transforms as

A [�] =

Z
dz dz̄ L(⌧)(z) =

Z
dw dw̄

��det
�
J �1

��� L(⌧) (z(w))

=

Z
dw dw̄

⇣
L(0)(w) + ⌧ TT̄

(0)
(w)

⌘
(4.15)

where TT̄
(0)

(w) = (KN )2�V
2. Thus, we conclude that the action is not invariant under the

change of variables. This is not totally surprising since the map (4.4) is on-shell, however it

is remarkable that the (bare) perturbing field can be so easily identified once the change of

variables is performed. Again, our result matches with [18], where the TT̄
(0)

term emerges

as a JT gravity contribution to the action.

• Notice that the EoMs associated to (4.1) for a generic potential V are invariant under the

transformation8

z ! � z , ⌧ ! � ⌧ , V ! V � c , (4.16)

7
In the N = 1 case, the transformed Lagrangian takes an even simpler expression

L
(⌧)
1 (z(w)) =

L
(0)
1 (w)

1� ⌧L(0)
1 (w)

. (4.12)

8
We thank Sergei Dubovsky for questioning us about the possible existence of such symmetry of the EoMs.
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Notice that:

12

Generic -deformed modelsTT̄

3.1 From the deformed to the undeformed model through a local change of

coordinates

Thus we have inferred that there must exist a coordinate system w = (w1(z), w2(z)) =

(w(z), w̄(z)) in which the matrices g
TT̄
µ⌫ and d

TT̄
µ⌫ assume the same form as g

sG
µ⌫ and d

sG
µ⌫ ,

respectively. In formulae

g
sG
µ⌫dw

µ
dw

⌫ = g
TT̄
µ⌫ dz

µ
dz

⌫ =) g
sG
µ⌫

dw
µ

dz⇢

dw
⌫

dz�
= g

TT̄
⇢� , (3.15)

d
sG
µ⌫dw

µ
dw

⌫ = d
TT̄
µ⌫ dz

µ
dz

⌫ =) d
sG
µ⌫

dw
µ

dz⇢

dw
⌫

dz�
= d

TT̄
⇢� . (3.16)

It is now a matter of simple algebraic manipulations to obtain the following equations for the

new coordinates

@w =
(S + 1)2

4S (1� ⌧V )
, @̄w̄ =

(S + 1)2

4S (1� ⌧V )
, (3.17)

@̄w =
⌧

S

�
@̄�
�2

, @w̄ =
⌧

S
(@�)2 . (3.18)

Let us now use the latter relations to find the partial derivatives of the field � in the coordinates

w:  
@�

@̄�

!
= J

 
@�/@w

@�/@w̄

!
, J =

 
@w @w̄

@̄w @̄w̄

!
. (3.19)

The result is

@� =
1

1� ⌧ (K + V )

@�

@w
, @̄� =

1

1� ⌧ (K + V )

@�

@w̄
, (3.20)

where we have defined the following function

K =
@�(w)

@w

@�(w)

@w̄
. (3.21)

With the help of (3.20), we can now find the expression for S in the coordinates w

S =
q
1 + 4⌧ (1� ⌧V ) @�@̄� =

1 + ⌧ (K � V )

1� ⌧ (K + V )
. (3.22)

We can then write the Jacobian matrix J and its inverse J �1 in terms of w as

J =

 
@w @w̄

@̄w @̄w̄

!
=

1

(1� ⌧V )2 � ⌧2K2

0

@
1� ⌧V ⌧

⇣
@�
@w

⌘2

⌧

⇣
@�
@w̄

⌘2
1� ⌧V

1

A ,

J �1 =

 
@wz @wz̄

@w̄z @w̄z̄

!
=

0

@
1 + ⌧V �⌧

⇣
@�
@w

⌘2

�⌧

⇣
@�
@w̄

⌘2
1 + ⌧V

1

A . (3.23)
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space-time deformation. In Euclidean coordinates the change of variables is

dx
µ =

⇣
�
µ
⌫ + ⌧ eTµ

⌫(y)
⌘
dy

⌫
, y = (y1, y2) , (1.3)

dy
µ =

⇣
�
µ
⌫ + ⌧

� eT (⌧)
�µ

⌫
(x)

⌘
dx

⌫
, x = (x1, x2) , (1.4)

with eTµ
⌫ = �✏

µ
⇢✏

�
⌫T

⇢
� and

� eT (⌧)
�µ

⌫
= �✏

µ
⇢✏

�
⌫

�
T
(⌧)

�⇢
�
, where T = T

(0) and T
(⌧) are the

unperturbed and perturbed stress-energy tensor in the set of coordinates y and x, respectively.

Then, any solution of the perturbed EoMs can be mapped onto the ⌧ = 0 corresponding

solution, i.e.

�
(⌧)(x) = �

(0) (y(x)) , (1.5)

where the r.h.s. of (1.5)1 is defined on a deformed space-time with metric

g
0
µ⌫ = �µ⌫ � ⌧✏µ⇢✏

�
⌫

�
2T + ⌧T

2
�⇢

�
. (1.7)

In fact (1.4) corresponds to a natural generalization of the Virasoro conditions used in the

GGRT treatment of the NG string [39], 2 and it matches precisely the generalisation corre-

sponding to classical JT gravity [18, 23].

2 Classical integrable equations and embedded surfaces

It is an established fact that integrable equations in two dimensions admit an interpretation

in terms of surfaces embedded inside an N -dimensional space. The two oldest examples of

this connection, dating back to the works of 19th century geometers [40, 41], are the sine-

Gordon and Liouville equations. They appear as the Gauss-Mainardi-Codazzi (GMC) system

of equations (A.14) for, respectively, pseudo-spherical and minimal surfaces embedded in the

Euclidean space R3. As proved by Bonnet [42], any surface embedded in R3 is uniquely

determined (up to its position in the ambient space) by two rank 2 symmetric tensors: the

metric gµ⌫ (A.4) and the second fundamental tensor dµ⌫ (A.6). Their intuitive role is to

measure, respectively, the length of an infinitesimal curve and the displacement of its endpoint

from the tangent plane at the starting point. One can then use gµ⌫ and dµ⌫ to study the

motion of a frame anchored to the surface. The result is a system of linear di↵erential

equations, known as Gauss-Weingarten equations (A.9, A.10). The GMC system appears

then as the consistency condition for this linear system, e↵ectively constraining the “moduli

space” consisting of the two tensors gµ⌫ and dµ⌫ .

The search for a general correspondence originated in the works of Lund, Regge, Pohlmeyer

and Getmanov [43–45] and was subsequently formalised by Sym [46–50] who showed that any

1
Notice that from (1.5) it follows that �(⌧)

(x) fulfills the Burgers-type equation

@⌧�
(⌧)

(x) + (@⌧x
µ
) @µ�

(⌧)
(x) = 0 , (1.6)

which may justify the wave-breaking phenomena observed in section 5. In our results xµ
is always linear in ⌧ ,

however we could not find an explicit expression for @⌧x
µ
valid in general.

2
See [8] for a clarifying discussion related to the current topic.

– 3 –
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Further alternative geometric intrepretations

2) Any -deformed field theory is dynamically equivalent to its associated unperturbed theory coupled 
to (flat) Jackiw-Teitelboim gravity [Dubovsky-Gorbenko-Mirbabayi].

TT̄

3) The  deformation of a generic field theory is equivalent to coupling the undeformed field theory to 
2D ‘ghost-free massive gravity’  [Tolley].

TT̄

1) There exists a random geometry interpretation  of the  deformation of quantum field theory [Cardy]TT̄

to the action. Less formally, we define the deformation of a correlation function as

�h�(t)
1 (x1)�

(t)
2 (x2) · · · i = �t hO(t)�(t)

1 (x1)�
(t)
2 (x2) · · · i

(t)
c , (2.2)

and of the free energy as

�F (t) = �� logZ(t) = ��t hO(t)
i
T (t) . (2.3)

Note that t has dimension (length)2, so that the deformation is irrelevant in the IR, and
conversely relevant in the UV.

In Cartesian coordinates, detT = T11T22�T 2
12. This is minus Zamolodchikov’s operator

[1]

TT �⇥2 = TzzTz̄z̄ � T 2
zz̄ =

1
4

⇥
(T11 � T22 � 2iT12)(T11 � T22 +2iT12)� (T11 + T22)

2
⇤
, (2.4)

but the expression
detT = 1

2✏ik✏jlT
ijT kl (2.5)

is more useful.
It is very important [10] that the infinitesimal deformation is defined in terms of the

stress tensor T (t) of the deformed theory. The result is not the same as adding a term
t
R �

detT (0)
�
d2x with a finite coupling t to the action of T (0).

The perturbation of the action (2.1), which is quadratic in T (t), may as usual be
decoupled by a gaussian integral (Hubbard-Stratonovich transformation):

e2�t
R
D ✏ik✏jlT ijTkld2x

/

Z
[dh]e�(1/8�t)

R R
D ✏ik✏jlhijhkld2x+

R
D hijT ijd2x , (2.6)

where we have used ✏ik✏jl✏km✏ln = �im�jn, and suppressed the t-dependence of T (t). The
integral is over a tensor field hij , of which the antisymmetric part decouples. As we shall
only need to consider the saddle point solution and the relative gaussian fluctuations about
this, we can afford to be cavalier about the precise integration contours.

Since it will turn out that3 hij = O(�t), by the definition of Tij the second term
is equivalent to an infinitesimal change in the metric gij = �ij + hij . In principle the
integration in (2.6) is over all metrics infinitesimally close to euclidean, including those
with non-zero curvature. However, it turns out that because hij couples to a conserved
tensor Tij , this is not the case: we may restrict hij to be an infinitesimal diffeomorphism

hij = ↵i,j + ↵j,i with ↵i,j = ↵j,i , (2.7)

that is, the metric is flat. It turns out then that the action for ↵ is a total derivative and
therefore receives contributions only from the boundary @D. This we now show.

Since the integral in (2.6) is gaussian, its value is given by the value of the exponent at

3We may always assume this since we only ever consider infinitesimal �t, with a new T (t)
ij at each step.
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(Hubbard-Stratonovich transformation) 

to give a practical general solution by means of introducing an auxiliary zweibein e
a
µ (and

associated metric gµ⌫ = e
a
µe

b
⌫⌘ab) and considering the action

ST T̄ [', f, e] =

Z
d2x

1

2�
✏
µ⌫
✏ab(e

a
µ � f

a
µ)(e

b
⌫ � f

b
⌫) + S0[', e] (2.3)

where S0[', e] is the undeformed action living on the spacetime defined by the zweibein e
a
µ.

We will often refer to this as the seed theory. The stress energy defined from ST T̄ by varying

with respect to f gives

det(f)Tµ
a[', f, e] = � 1

�
✏
µ⌫
✏ab(e

b
⌫ � f

b
⌫) , (2.4)

which is better written as

eµ
a = fµ

a � � det f✏µ⌫✏
ab
T
⌫
b[', f, e] . (2.5)

We stress this is not an equation of motion, but a definition of the stress energy tensor. The

actual equation of motion is the deceptively similar equation

1

�
✏
µ⌫
✏ab(e

b
⌫ � f

b
⌫) +

�S0[', e]

�eaµ
= 0 . (2.6)

In the absence of curvature couplings, this equation is an algebraic equation for the zweibein

e which may be solved relatively straightforwardly. We denote by e⇤ the associated on-shell

value of eµa which is now � dependent by virtue of equation (2.6). In turn from this equation

we find a simple relationship between the stress energy of the undeformed theory on the

curved geometry e and that of the T T̄ deformed theory, namely

det fTµ
a =

�S0[']

�eaµ

���
e=e⇤

= det e⇤T0
µ
a(', e⇤) . (2.7)

Remembering that the spacetime indices on T
µ
a are raised and lowered using f/� and those

in T0
µ
a using e/g then by taking the determinant of both sides we find

detTµ
a = detT0µ

a
. (2.8)

To see that the action (2.3) is correctly defining the T T̄ deformation we note that

dST T̄ [', f, e⇤]

d�
= �

Z
d2x

1

2�2
✏
µ⌫
✏ab(e

a
µ � f

a
µ)(e

b
⌫ � f

b
⌫) +

Z
d2x

de⇤
d�

�ST T̄ [', f, e⇤]

�e
. (2.9)

The last term vanishes, by virtue of the on-shell condition, and so we have on-shell

dST T̄ [', f, e⇤]

d�
= �

Z
d2x

1

2�2
✏
µ⌫
✏ab(e⇤µ

a � fµ
a)(e⇤⌫

b � f⌫
b) (2.10)

= �
Z

d2x
1

2
✏
µ⌫
✏abTµ

a[', f, e⇤]T⌫
b[', f, e⇤] . (2.11)
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1 Introduction

The TT deformation of classical and quantum field theories in d = 2 space-time dimensions [1,2]
has provided remarkable insights into the topology and geometry of the space of field theories,
as well as allowing exact calculations of physical quantities related to the deformed models. In
two dimensions, TT flows are triggered by the operator

TT =
1

2

(
tr [T]2 − tr

[
T2
])

= det[T] , (1.1)

where T denotes the two-dimensional stress-energy tensor of the theory. Although the TT op-
erator is irrelevant, it was shown that the local operator (1.1) is well defined at a quantum
level [3], and the flow it generates preserves many of the symmetries of the seed (i.e., unde-
formed) theory, including integrability. This last property is a feature of a much larger class
of deformations, called double current deformations [4], and encompassing all the recent two-
dimensional generalisations of the TT deformation, such as the JT [5, 6], TTs [7], generalised
TT [8–10], and CDD [11–13] deformations. Moreover, many links have been observed with
several topics in theoretical physics, such as string theory [14–17], holography [18–27], random
geometries [28], out-of-equilibrium conformal field theory [29, 30], the generalised hydrodynam-
ics (GHD) approach [9, 10, 31], and quantum gravity [32–38]. In particular, it was shown that
any TT-deformed two-dimensional field theory is dynamically equivalent to its associated seed
theory coupled to a topological theory of gravity [39] which, on the plane, almost looks like
Jackiw-Teitelboim gravity [40, 41]. In other words, denoting the seed theory by SM and the
corresponding TT deformed theory by SM,τ , the following equivalence holds:

SM,τ " SM +

∫
d2x

√
−g (ϕR− Λ2) , (1.2)

where vacuum energy Λ2 is related to the TT coupling parameter τ by τ ∝ Λ−1
2 . Notice that

equation (1.2) provides a complete, quantum and non-perturbative definition of the TT deformed
theories along the whole flow. In addition, a main motivation for the current work stems from
the observation that in d = 2, a TT deformation can be interpreted as a field-dependent local
coordinate transformation that links the original model to its deformed version [39, 42].

Generalisations of the TT flow to higher dimensions have been introduced and studied in
various works [28, 43–48], at least at the classical level. These investigations, alongside the in-
troduction of the so-called Modified Maxwell (ModMax) theory [49], and the discovery that
both Born-Infeld and ModMax arise from Maxwell theory through a Lagrangian flow involving
TT-type composite fields [46,47,50], have sparked a revival of interest in nonlinear electrodynam-
ics [49, 51–53]. Moreover, the fact that the corresponding deforming operators are constructed
solely in terms of invariants built from the stress-energy tensor hints at the natural connection
with General Relativity and modified gravity models, which will be discussed shortly.

Almost in parallel, the study of modified theories of gravity has gained substantial interest in
cosmology. In particular, Born-Infeld-inspired minimal extensions of General Relativity allowed
to reproduce non-trivial gravitational dynamics while generating non-singular cosmologies [54–
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Quantum -deformations on infinite cylinder of circumference RTT̄

∂τℋ(τ) = det(Tμν(τ)) → ∂τ⟨n |ℋ(τ) |n⟩ = ⟨n | det(Tμν(τ)) |n⟩

⟨n | det(Tμν(τ)) |n⟩ = ⟨n |T11 |n⟩⟨n |T22 |n⟩ − ⟨n |T12 |n⟩⟨n |T21 |n⟩

Using Zamolodchikov factorisation property:

and

with
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∂τEn(R, τ) = En(R, τ)∂REn(R, τ) +
P2

n(R)
R

The inviscid Burgers equation for the quantum spectrum

 source term

Pn = 0 → En(R, τ) = En(R + τEn(R, τ),0)

In typical hydrodynamic applications the initial profile is smooth on the real R axis and for

short times all branch points lie in the complex plane. However, the temporal evolution

leads, in a finite time, the singularities on the real domain, producing a shock in the

physical solution.

Commonly, a solution of the hydrodynamic equation (2.53) undergoes a sequence of wave-

breaking events depending on the number of bumps in its initial profile.

Figure 2.1: Inviscid Burgers’ solution at di�erent · values and initial condition ≠e≠(2(R≠1))2 .

2.2.2 Deformed ground state

From the initial condition (2.23) and the parameterization (2.56), we can write

R = R̃ + ·
fi

6R̃
cthermal(r̃), (2.60)

Ê0 = E0(R̃). (2.61)

The standard analysis of the shock wave condition (2.57) tells us about the singularity

for · > 0 (see for example [20]).

Last thing, we look at the (r, ĉthermal = ≠6R

fi
Ê0) plane. With reference to (2.60) and (2.61),

we obtain

r = mR(·, R̃), (2.62)

ĉthermal = ≠6R

fi
E0(R̃) =

3
1 + ·

fi

6R̃2 cthermal(r̃)
4

cthermal(r̃). (2.63)

27
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a. b.

Figure 3: The e↵ect of the �R-deformation on relativistic scattering processes. The parti-
cles gain a width in a consistent fashion in space-time, as if “grout” were added between
tiles. a. elastic scattering; b. inelastic scattering.

as derived by Zamolodchikov [1, 2]. In fact the simple linear equation @�RR = �E arises
on solving (72) by the method of characteristics.

Lastly, this picture gives a simple explanation of the relativistic CDD factors. We
may take inspiration from the multi-specie non-relativistic formula (67), where the term,
in the sum with, with positive (negative) sign corresponds to the scattering of velocity
tracer n (m) with a particle on its left (right). In the relativistic case, the scattering of
particle n with m 6= n on either side induces a jump by �Rp0m, and we obtain

ei�R
P

m<n(p
0
mp1n�p0np

1
m) (73)

as found in [10, 2].
It is a simple matter to derive this picture in the case of free relativistic particles

by performing an analysis paralleling that of non-relativistic systems in Section 2.2. We
simply choose the relativistic dispersion relation

!(p) =
p

M2 + p2 (74)

in (3), and, in order to have Lorentz invariance, we set the potential to zero whenever
particles are away from each other. The deformation is generated by the X operator (13),
but with the energy density i = 2 instead of the particle density i = 0, where

q2(x, t) =
X

n

�(xn(t)� x)En(t) (75)

with En = !(pn). Again, the full deformation of the Hamiltonian is the result of the flow
�R 7! H(�R) generated by X,

dH(�R)

d�R
= {H(�R), X}. (76)
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We see that in the zero momentum sector, this deformation changes the size of the system by �N .
From this we can immediately deduce some qualitative behavior of the deformed model. We expect
the physics for di↵erent sign of � to be di↵erent. For � > 0, we can take � to be any positive
value. In particular, we can take � ! +1 limit. In this limit, the length tends to infinity and the
particles are so far away from each other that they seldom interact. So we obtain an almost free
theory for any ✓(u, v). On the other hand, for � < 0, since physically we shall require R+ �N � 0
we have � � �

R

N
. Namely, for fixed N and R, there’s a critical value �c = �N/R beyond which

the system breaks down. The break down of the system can be seen in various physical quantities.
For example, taking ✓(u, v) = 0 in the free fermion limit, we find that the momentum and energy
are divergent at the critical value.

There is an alternative interpretation of our observation, which is related to the so-called hard
rod model. This is the model describes a free system of hard rods with finite size. The Hamiltonian
of the hard rod model is given by

H = �

NX

j=1

@2

@x2
j

+
NX

i<j

v(xi � xj) (56)

with the interaction

v(x) =

⇢
1, for |x| < a
0, for |x| > a

(57)

where a > 0 is a positive number describing the size of the hard rod. This is an integrable model
with the phase shift [26, 27]

✓HR(u, v) = �i logSHR(u, v) = �⇡sgn(u� v)� a(u� v). (58)

Now we take the S-matrix of the Lieb-Liniger model in the free boson limit c ! 0. The deformed
phase shift (47) is

lim
c!0

✓(u, v) + �(p(u)� p(v)) = �⇡sgn(u� v) + �(u� v). (59)

We find that for � < 0, the S-matrix for the deformed free boson is precisely the hard rod model
! Therefore, we find that the deformation for � < 0 can be interpreted as fattening a point-like
particle to a finite size hard rod of length |�|, see figure 1. It is then obvious that this value has to

Figure 1: The simple bilinear deformation turns a free bose gas into a free hard rod gas.

be bounded for fixed N and R. Since each rod has the length |�|. In order to fit N such rods in a
length R ring, we must have |�|N  R.
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phase shift (47) is

lim
c!0

✓(u, v) + �(p(u)� p(v)) = �⇡sgn(u� v) + �(u� v). (59)

We find that for � < 0, the S-matrix for the deformed free boson is precisely the hard rod model
! Therefore, we find that the deformation for � < 0 can be interpreted as fattening a point-like
particle to a finite size hard rod of length |�|, see figure 1. It is then obvious that this value has to

Figure 1: The simple bilinear deformation turns a free bose gas into a free hard rod gas.

be bounded for fixed N and R. Since each rod has the length |�|. In order to fit N such rods in a
length R ring, we must have |�|N  R.

13

Point particles  Finite size particles

A possible quantum interpretation:

[Cardy-Doyon]

[Y. Jiang]
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(τ > 0,ceff > 0)

(τ > 0,ceff < 0) ceff = c − 24Δ



    The Conformal Field Theory  case

The total energy is:

   (primary)ceff = c − 24Δ

which matches the form of  the (D=26, ) Nambu Goto spectrum, for a generic  CFT.ceff = 24

so that equations (2.1) are replaced by the system of two coupled nonlinear integral equa-

tions:

f (±)(✓) = ±i↵� i
M

2
e±✓ R (2.8)

⌥

Z

C(±)
1

dyK(✓ � y) ln
⇣
1 + e⌥f

(±)(y)
⌘
±

Z

C(±)
2

dyK(✓ � y) ln
⇣
1 + e±f

(±)(y)
⌘

⌥

Z

C(⌥)
1

dy �CDD(✓ � y) ln
⇣
1 + e±f

(⌥)(y)
⌘
±

Z

C(⌥)
2

dy �CDD(✓ � y) ln
⇣
1 + e⌥f

(⌥)(y)
⌘
.

Plugging in (2.7), it is simple to show that these equations can be rewritten as

f (±)(✓) = ±i↵� i
M

2
e±✓

⇣
R+ 2tE(⌥)(R, t)

⌘
(2.9)

⌥

Z

C(±)
1

dyK(✓ � y) ln
⇣
1 + e⌥f

(±)(y)
⌘
±

Z

C(±)
2

dyK(✓ � y) ln
⇣
1 + e±f

(±)(y)
⌘
,

where E(±)(R, t) denote the canonical expressions for I(±), evaluated on the solutions of

the deformed NLIE system:

E(±)(R, t) =
M

2

"Z

C(±)
1

d✓

2⇡i
e±✓ ln

⇣
1 + e�f

(±)(✓)
⌘
�

Z

C(±)
2

d✓

2⇡i
e±✓ ln

⇣
1 + ef

(±)(✓)
⌘#

.(2.10)

Equations (2.9) reveal that the deformation can be interpreted as a redefinition of the

length-parameters appearing in the NLIEs, R ! R+ 2tE(±)(R, t). Consistency with (2.5)

then yields the following conditions:

R ! R+ 2⌧E(±)(R, ⌧) (2.11)

E(+)(R, ⌧) = 2⇡

✓
n0 � ce↵/24

R+ 2⌧E(�)(R, ⌧)

◆
, E(�)(R, ⌧) = 2⇡

✓
n̄0 � ce↵/24

R+ 2⌧E(+)(R, ⌧)

◆
.(2.12)

These are precisely the relations found in [9] starting from (generic) TBA equations and

imply that the energy levels have the form [7, 9]:

E(R, ⌧) = E(+)(R, ⌧) + E(�)(R, ⌧)

= �
R

2⌧
+

s
R2

4⌧2
+

2⇡

⌧

⇣
n0 + n̄0 �

ce↵
12

⌘
+

✓
2⇡(n0 � n̄0)

R

◆2

, (2.13)

P (R) = E(+)(R)� E(�)(R) =
2⇡(n0 � n̄0)

R
. (2.14)

As reviewed in the introduction, for ce↵ = D � 2 this coincides with the spectrum of the

Nambu-Goto string inD-dimensional target space obtained through light-cone quantization

(for more comments on this relation, see the Conclusions).

Let us also briefly mention that there are other NLIEs describing integrable CFTs, as well

as massless flows between minimal models [11, 13, 14]. The analysis of this section could

be repeated without essential modifications to study the t-deformation of these systems

as well. The purpose of the following Section 3 is to illustrate the generalization of these

results to the case of a massive integrable QFT, the sine-Gordon model.
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 [Dubovsky-Flauger-Gorbenko 2012,
Caselle-Gliozzi-Fioravanti-Tateo 2013]
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Notice that  there are  spectral singularities connecting the two branches.
 The most evident being the tachyonic critical point at 

Rcr =
2πcτ

3

From the point of view of a QFT at finite temperature , this critical point is consequence of an 
exponential  growth of the degeneracy of the energy levels at large  energy 

T = 1/R
E

R = 1/T

L
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δS(E) =
δE
T

→ T(E) =
1

∂ES(E)
, S = log ρ(E)

indeed,   coincides with  the upper limit temperature of the system:TH

TH = sup(T(E))
Comparing this result  with the tachyonic singularity at   we obtain: Rcr

Rcr = 1/TH .

The asymptotic behaviour of the level degeneracy for large   isn0 = n̄0 = n

ρ(n) =
1

16 3n3
e2π n/3 = ρ(E)

dE
dn

= 3 ( πTH

3E )
3

eE/TH TH =
3
πτ

, E(n) ≃ 4πn/τwe used: 

Consider the degeneracy of a free (massless) fermionic system on a circle, with  
 and circumference  c = 1/2 L → ∞
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Exact S-matrix and CDD ambiguity 

Consider a  relativistic integrable field theory with factorised scattering: 

Castillejo-Dalitz-Dyson ambiguity: 

The simplest possibility, consistent with the crossing and unitarity relations is:
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The finite-size  properties  of the sine-Gordon  model are encoded in the single counting function f(θ), solution to 
the following nonlinear integral equation:

[Klümper-Batchelor-Pearce, 1991][ Destri-DeVega, 1992]

(a) (b)

Figure 2. Riemann surface describing the deformed solution �
(s)(z, ⌧) , (⇠ = ⇠̄ = 0), in the complex

plane of z for s = 1 (a), and s = �1 (b).

5 The quantum spectrum

This second part of the paper is devoted to the study of the quantum version of the per-

turbations of classical field theories described in the preceding sections. The NLIEs will be

the starting point for the derivation of the spectral flow equations for the conserved charges

subjected to infinitesimal variations of the deforming parameters. Although most of our final

results are expected to hold in general, we will consider for simplicity the sine-Gordon model,

with twisted boundary conditions, as explicit example.

5.1 Burgers-type equations for the spectrum

The current purpose is to try to build the quantum version of the classical models described

in section 3, by including specific scattering phase factors into the NLIE for the sine-Gordon

model confined on a infinite cylinder of circumference R. The sine-Gordon NLIE is

f⌫(✓) = ⌫(R,↵0 | ✓)�
Z

C1
d✓

0K(✓ � ✓
0) ln

⇣
1 + e

�f⌫(✓0)
⌘
+

Z

C2
d✓

0K(✓ � ✓
0) ln

⇣
1 + e

f⌫(✓0)
⌘

,

(5.1)

where we have set

⌫(R,↵0 | ✓) = i2⇡↵0 � imR sinh(✓) , (5.2)

to denote the driving term. In (5.1), m is the sine-Gordon soliton mass, ↵0 is the quasi-

momentum and K(✓) is the kernel defined as

K(✓) =
1

2⇡i
@✓ lnSsG(✓) , (5.3)

– 20 –

(a) (b)

Figure 2. Riemann surface describing the deformed solution �
(s)(z, ⌧) , (⇠ = ⇠̄ = 0), in the complex

plane of z for s = 1 (a), and s = �1 (b).

5 The quantum spectrum

This second part of the paper is devoted to the study of the quantum version of the per-

turbations of classical field theories described in the preceding sections. The NLIEs will be

the starting point for the derivation of the spectral flow equations for the conserved charges

subjected to infinitesimal variations of the deforming parameters. Although most of our final

results are expected to hold in general, we will consider for simplicity the sine-Gordon model,

with twisted boundary conditions, as explicit example.
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model confined on a infinite cylinder of circumference R. The sine-Gordon NLIE is
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to denote the driving term. In (5.1), m is the sine-Gordon soliton mass, ↵0 is the quasi-

momentum and K(✓) is the kernel defined as

K(✓) =
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2⇡i
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Burgers equation from integrability

(for more comments on this relation, see the Conclusions).

Let us also briefly mention that there are other NLIEs describing integrable CFTs, as well

as massless flows between minimal models [11, 13, 14]. The analysis of this section could

be repeated without essential modifications to study the t-deformation of these systems

as well. The purpose of the following Section 3 is to illustrate the generalization of these

results to the case of a massive integrable QFT, the sine-Gordon model.

3. Deforming the sine-Gordon model

The sine-Gordon model can be seen as a relevant perturbation of the CFT corresponding

to a single massless boson. The integrals of motion of the model are encoded in the single

counting function f(✓), solution to the following nonlinear integral equation [34]:

f(✓) = �imR sinh(✓) + i↵

�

Z

C1
dyK(✓ � y) ln

⇣
1 + e�f(y)

⌘
+

Z

C2
dyK(✓ � y) ln

⇣
1 + ef(y)

⌘
, (3.1)

where the kernel K is the same defined in Section 2.1, m denotes the soliton mass, R

is the radius of the cylinder on which the theory is quantized, and the twist parameter

↵ selects the vacuum (e.g., see [41]). Again, the integration contours formally encode

the characteristics of the state under consideration; for the ground state, C1 = R + i0+,

C2 = R� i0+. Energy and momentum can be obtained from the counting function through

the relations:

E(R) = m

Z

C1

dy

2⇡i
sinh(y) ln

⇣
1 + e�f(y)

⌘
�

Z

C2

dy

2⇡i
sinh(y) ln

⇣
1 + ef(y)

⌘�
, (3.2)

P (R) = m

Z

C1

dy

2⇡i
cosh(y) ln

⇣
1 + e�f(y)

⌘
�

Z

C2

dy

2⇡i
cosh(y) ln

⇣
1 + ef(y)

⌘�
. (3.3)

In the case of two particles with equal mass, the CDD phase in (1.1) takes the simple form

�CDD(✓1, ✓2) = tm2 sinh(✓1 � ✓2). (3.4)

This prompts us to deform the kernel appearing in the NLIE by

K(✓) ! K(✓) +
1

2⇡
@✓�CDD(✓) = K(✓) + t

m2

2⇡
cosh(✓). (3.5)

Inserting this new kernel in (3.1), after simple manipulations we find the deformed version

of the NLIE:

f(✓) = �im sinh(✓) [R+ t E(R, t)]� im cosh(✓) t P (R, t) (3.6)

�

Z

C1
dyK(✓ � y) ln

⇣
1 + e�f(y)

⌘
+

Z

C2
dyK(✓ � y) ln

⇣
1 + ef(y)

⌘
,

where E(R, t) and P (R, t) are defined by the rhs of (3.2),(3.3) in terms of the solution to

(3.6).
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replacing

we get

with
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Then

which allows to compute the exact form of the τ-deformed energy level once its  R-dependence is known at 
τ = 0.  The result is:

therefore

with

It is then possible to prove that this sets of constraints are equivalent to the Burgers equation!
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ModMax and the  deforming operatorsTT̄

Consider the recent results on the Modified Maxwell  Theory [Bandos-Lechner-Sorokin-Townsend 2020]

where the tensors bT⌧,ab and bT⌧0,ab are both evaluated in flat space with metric ⌘ab. Notice that
the expression of (3.45) matches that of the (pseudo) metric found many years ago (see the
lecture notes [16]) for the Maxwell Born-Infeld theory, using a completely different approach.

From the discussion of section 2.2 we know that, in general, (3.45) are curved. In appendix
A, we show that it is possible to give an exact expression for the pair of vierbein ê

a
µ := ê

a
µ(⌧)

and ě
a
µ := ě

a
µ(⌧) that fulfil

ĝµ⌫(⌧) = ê
a
µ ê

b
⌫ ⌘ab , ǧµ⌫(⌧) = ě

a
µ ě

b
⌫ ⌘ab . (3.46)

Decomposing T⌧0,ab and T⌧,ab as per (3.43) with coefficients
⇣
a
(0)
⌧0 , a

(1)
⌧0 , a

(2)
⌧0

⌘
and

⇣
a
(0)
⌧ , a

(1)
⌧ , a

(2)
⌧

⌘
,

respectively, we obtain

ê
a
µ(⌧) =

p
⌃ (⌧0; ⌧) e

a
µ +

p
⌧0 � ⌧

⇣
u
(1)
⌧ Fcb + u

(2)
⌧ F

3
cb

⌘
⌘
ac
e
b
µ ,

ě
a
µ(⌧) =

p
⌃ (⌧ ; ⌧0) e

a
µ +

p
⌧ � ⌧0

⇣
u
(1)
⌧0 Fcb + u

(2)
⌧0 F

3
cb

⌘
⌘
ac
e
b
µ , (3.47)

where we defined

u
(1)
s =

p
2
⇣
a
(1)
s + Vs

4

⌘

q
4a(1)s + Vs + a

(2)
s tr[F2]

, u
(2)
s =

p
2a(2)sq

4a(1)s + Vs + a
(2)
s tr[F2]

,

⌃(s; s0) = 1 + (s� s0)

✓
a
(0)
s0 +

1

2
a
(1)
s0 tr[F

2] +
1

2
a
(2)
s0 tr[F

4]

◆
, (3.48)

and
Vs =

q�
4a(1)s

�2
+ 8a(1)s a

(2)
s tr[F2] + 2

�
a
(2)
s

�2
(tr[F2]2 � 2tr[F4]) . (3.49)

We observe that if a(2)s = 0 relations (3.48) drastically simplify and (3.47) reduces to

ê
a
µ(⌧) =

p
�(⌧0; ⌧) e

a
µ +

q
(⌧0 � ⌧) a(1)⌧ F

a
b e

b
µ ,

ě
a
µ(⌧) =

p
�(⌧ ; ⌧0) e

a
µ +

q
(⌧ � ⌧0) a

(1)
⌧0 F

a
b e

b
µ , (3.50)

with
�(s; s0) = 1 + (s� s0)

✓
a
(0)
s0 +

1

2
a
(1)
s0 tr[F2]

◆
. (3.51)

Relevant examples of models such that a(2)s = 0 are ModMax and its Born-Infeld-like extension,
that we shall briefly discuss in the next section.

4 ModMax and its Born-Infeld-like extension

Let us recall that the ModMax (MM) theory [19] represents a marginal deformation of the
Maxwell theory described by the Euclidean action AMM

� =
R
d4xLMM

� with

LMM
� = cosh(�)S � sinh(�)

p
S2 � P 2 , (4.1)
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where � is a real parameter and we defined the invariants6

S :=
1

4
FabF

ab
, P :=

1

4
eFabF

ab =
p

det[F] . (4.2)

One can associate to (4.1) a Born-Infeld-like extension (MMBI) [20] that is described by the
action AMMBI

⌧,� =
R
d4xLMMBI

⌧,� with

LMMBI
⌧,� =

�1 + SMMBI

2⌧
, SMMBI =

q
1 + 4⌧LMM

� + 4⌧2P 2 . (4.3)

Clearly AMM
0 = AM and AMMBI

⌧,0 = AMBI
⌧ where AM and AMBI

⌧ are the Maxwell (M) and the
Maxwell Born-Infeld (MBI) action respectively. A simple computation shows that the com-
ponents of the stress-energy tensor associated to (4.3) take the simple form

(TMMBI
⌧,� )ab = a

MMBI
⌧,� ⌘ab + b

MMBI
⌧,� F

2
ab , (4.4)

with coefficients

a
MMBI
⌧,� =

P
2

SMMBI

✓
2⌧ +

sinh(�)p
S2 � P 2

◆
+

1� SMMBI

2⌧
,

b
MMBI
⌧,� =

1

SMMBI

✓
S sinh(�)p
S2 � P 2

� cosh(�)

◆
. (4.5)

Using (4.4) and (4.5) it is possible to show (see [18]) that the action AMMBI
⌧,� belongs to the

flow of the irrelevant operator O[ 12 ,4]
⌧ with initial condition AMM

� at ⌧ = 0 for any value of �.
Interestingly, in [17] it was made the important observation that the action AMMBI

⌧,� belongs
to the flow of the marginal operator

eO[4]
� :=

q
�O[ 14 ,4]

� =
1

2

r
tr[T2

� ]�
1

4
tr[T� ]2 , (4.6)

with initial condition AMBI
⌧ at � = 0 for any value of ⌧ . This fact has been shown in [17]

by means of a perturbative expansion around � = 0. Let us briefly report here the exact
computation at finite values of �. Using (4.4) and (4.5) one has

1

2

r
tr[(TMMBI

⌧,� )2]� 1

4
tr[TMMBI

⌧,� ]2 = b
MMBI
⌧,�

p
S2 � P 2 . (4.7)

On the other hand,

@LMMBI
⌧,�

@�
=

1

SMMBI

⇣
S sinh(�)� cosh(�)

p
S2 � P 2

⌘
= b

MMBI
⌧,�

p
S2 � P 2 , (4.8)

whence the equivalence

@LMMBI
⌧,�

@�
=

1

2

r
tr[(TMMBI

⌧,� )2]� 1

4
tr[TMMBI

⌧,� ]2 . (4.9)
6
Notice that the definition of the invariants (4.2) becomes in Minkowsky signature SM = �S and PM :=

� P . Correspondingly, the Lagrangian density in Minkowsky signature becomes LMM
M (�) = �LMM(�).
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with initial condition AMBI
⌧ at � = 0 for any value of ⌧ . This fact has been shown in [17]

by means of a perturbative expansion around � = 0. Let us briefly report here the exact
computation at finite values of �. Using (4.4) and (4.5) one has
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whence the equivalence
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Notice that the definition of the invariants (4.2) becomes in Minkowski signature SM = �S and PM :=

� P . Correspondingly, the Lagrangian density in Minkowski signature becomes LMM
M (�) = �LMM(�).
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where 
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A novel classically marginal  deformation in 2d, was recently introduced, and denoted root-    TT̄

[Conti-Negro-RT, Ferko-Sfondrini-Smith-Tartaglino Mazzucchelli, Babaei Aghbolagh, Babaei Velni, 
Mahdavian Yekta, Mohammadzadeh].  

@LMM

@�
=

1

2

r
tr[(TMM

� )2]� 1

4
tr[TMM

� ]2 . (4.10)

@L�

@�
= � 1p

2

r
tr[(T�)

2]� 1

2
tr[T� ]

2 . (4.11)

@L⌧

@�
=

1

2

r
tr[(T⌧ )

2]� 1

2
tr[T⌧ ]

2 . (4.12)

@L⌧,�

@�
=

1

2

r
tr[(T⌧,�)

2]� 1

2
tr[T⌧,� ]

2 . (4.13)

@L⌧,�

@�
=

1

2

r
tr[(T⌧,�)

2]� 1

4
tr[T⌧,� ]

2 . (4.14)

4.1 Dimensional reduction from d = 4 to d = 2

It is well known [26] that there is a deep connection between the theories of Nambu-Goto in
d = 2 and Maxwell Born-Infeld in d = 4. In fact, particular solutions of Maxwell Born-Infeld
are also solutions of Nambu-Goto in static gauge with two transversal scalar fields. In this
section, we show that this link can be lifted to the Born-Infeld-like extension of ModMax.

In analogy with [26], we consider a specific field configuration consisting in the scattering
of plane waves along the direction x

1, which corresponds to the requirements

Aµ := Aµ(x̄) , @1A0 � @0A1 = 0 , (4.15)

where x̄ = (x0, x1) denotes the restricted set of local coordinates on the plane. Let us identify
�a(x̄) := Aa+1(x̄) with a 2 {1, 2}. Then, the constraint (4.15) implies the following reduction
Fab(x) ! F̄ab(x̄), where F̄ab has only four non-vanishing (independent) components that
depends on the derivative of the scalar fields {�i}i2{1,2} w.r.t. x̄:

F̄02 = @0�1 , F̄03 = @0�2 , F̄12 = @1�1 , F̄13 = @1�2 . (4.16)

Consequently, the invariants (S, P ) as per (4.2) reduce to (S̄2, P̄2), where we defined
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, P̄N := �
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with HN,ab the following symmetric tensor

HN,ab =
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⌘
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it commutes with the TT̄
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Finally, it corresponds to a change metric, but not to a global change of coordinates



Thank you for 
your attention!

27


