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Correlation functions in planar N =4 SYM 
from integrability  

• Integrability of planar N=4 SYM theory opened a window into exploring in a 
detailed and precise manner the gauge/string, or AdS/CFT correspondence 

• Local, gauge-invariant operators with definite conformal dimension correspond to 
eigenstates of a long-range interacting (super)spin chain - and to a string 
propagating in the AdS5 x S5 background (described by a sigma model) 

…

• Correlation functions of such operators can be computed with techniques inspired from 
2d integrable field theories (non-local form factors) 

• A practical motivation is to replace the tedious Feynman graph computations in 
gauge theories with more powerful techniques based on symmetries, and eventually 
to get a non-perturbative description for the gauge theory observables 

� = g2YMN = R4/(↵0)2

gs ⇠ 1/N

SD=10 = �
1

g2YM

Z
d10x

✓
1

4
TrFMNF

MN +
1

2
Tr �M

DM  

◆
(104)

Tr SU(N)ZZXXZZXZZZ...(x)

1
X

 

| ih |

x[±a] +
1

x[±a]
=

u± ia/2

g

g =

p
�

4⇡
`12, `23, `31 >> 0

`ij =
1

2
(Li + Lj � Lk)

|�Ai
i i

↵ = ↵̄ = 1

K ! 1

logO ' 2g⇠

Z 1

�1

d✓

2⇡
cosh ✓ log(1 + Y (✓))

Y (✓) = �
sin

�
�
2 + i ⇠2

�
sin

�
�
2 � i ⇠2

�

sin
�
�
2 + i ⇠2 cosh ✓

�
sin

�
�
2 � i ⇠2 cosh ✓

�

x12, x24, x34, x13 ! 0

y ! 1

⇠ = 0

References

31



AdS/CFT spin chain 

• At weak coupling the spin chain is a supersymmetric, long range generalisation of 
the Heisenberg spin chain with a continuous parameter (’t Hooft coupling constant) 

• The spin states correspond to the fundamental fields of the gauge theory: SU(Nc) 
gauge fields, six real bosons and four complex fermions 

where �µ and �i are the chiral projections of the gamma matrices in four and six dimen-
sions respectively. The fields Aµ, �i and  a form a supermultiplet.

Symmetries

The action (
neq4

5) is Poincaré invariant and it is classically scale invariant. The classical
dimensions of the fields are

[Aµ] = [�i] = 1 [ a] =
3

2
. (6)

In fact, the theory remains scale invariant upon quantization, the beta function being
zero, and the theory is conformally invariant at quantum level. The conformal group
in four dimensions is SO(4, 2) ⇠ SU(2, 2). This group contains two su(2) components,
with generators L↵

� and L̄↵̇
�̇
, the dilatation operator, D, the translations, Pµ and the

special conformal transformations, Kµ. The internal symmetry which rotates the six
scalars into one another, or the R symmetry, is given by SO(6) ⇠ SU(4). Taking into
account the supertranslations Qa

↵, Q̄↵̇a and the super- version of the special conformal
transformations, S↵

a , S̄↵̇a, we obtain the total symmetry group as PSU(2, 2|4). The
structure of the generators can be schematically represented as

 
L, L̄, P, K, D Q, S̄

Q̄, S R

!
(7)

where the generators on the diagonal are bosonic and the ones on the anti-diagonal are
fermionic. The generators have a definite dimension

[D] = [L] = [L̄] = [R] = 0 , [P ] = 1 , [K] = �1 , [Q] = 1/2 , [S] = �1/2 . (8)

Conformal dimensions and the dilatation operator

We are going to consider gauge invariant, local operators, which are traces over the
gauge group of products of operators, e.g.

Oi1µi2...↵in(x) = Tr [�i1(x)Dµ�i2(x)... ↵(x)�in(x)] , (9)

Multiple trace operators occur as well, but in the planar limit we can restrain ourselves
to the single trace operators.

The operators organize in super-multiplets of the PSU(2, 2|4) symmetry. The op-
erator with the lowest dimension in the multiplet is called a superconformal primary
operator.

The unitary representations of the superconformal algebra are labeled by the quantum
numbers of the bosonic subgroup

SO(3, 1)⇥ SO(1, 1)⇥ SU(4) (10)

(s1, s2) � [r1, r2, r3]

with s1 and s2 being half-integer, � is the positive (or zero) conformal dimension and
[r1, r2, r3] are the (integer) Dynkin labels of SU(4).

The unitary representations of the superconformal group were classified by Dobrev
and Petkova. There are three discrete series of representations, for which at least one of
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1 Introduction

The purpose of these lecture is to show how the integrable structures appeared in the
context of the AdS/CFT correspondence and how they might help proving the Maldacena
conjecture. Integrability is related to the planar limit of the N = 4 gauge theory, with
its counterpart, the free strings in AdS5 ⇥ S5.

1.1 Maldacena conjecture

Maldacena conjectured that the N = 4 gauge theory in four dimensions, with gauge
group SU(N), in the conformal phase, is equivalent to the IIB string theory on the space
AdS5 ⇥ S5, with a flux N units of flux through S5. The radius of the curvature of both
AdS5 and S5 is

R4 = 4⇡gsN↵
02 ,

where gs is the string coupling constant and

g2YM = gs .

The conjecture comes into several versions
a) strong version: holds for any values of gYM and N
b) weak version: holds in the planar limit, in which � = g2YMN is kept finite while N
goes to infinity. This is the limit in which the integrability appears.

2 The N = 4 gauge theory

The action for the N = 4 gauge theory in four dimensions can be obtained from the ten
dimensional N = 1 gauge theory

S =

Z
d10x
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where the covariant derivative is defined as

DM = @M � igYM [AM , ] (2)

and  is a sixteen-component Majorana-Weyl spinor in ten dimensions. Upon dimen-
sional reduction, six of ten components of the gauge field become scalars, while the
sixteen-dimensional spinor decomposes into four copies of left and right two-dimensional
spinors in four dimensions.

AM , M = 5, ..., 10 ! �i , i = 1, ..., 6 . (3)
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e.g.

• Bosonic symmetry = so(6) x so(4,2)    ⊂   psu(2,2|4);   isometry of S5 x AdS5

• Sutherland solutions of the spin chain rotating string solution
finite gap solution of the sigma model

• Vacuum state              BPS operator e.g.  

{q1, · · · , qm} = {1 · · · 1| {z }
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• Magnons have                                         flavours and scatter with Beisert’s scattering matrix^2    
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• Finite size corrections obtained via a reformulation of the TBA,  Quantum Spectral Curve     

form a su(2) subsector of so(6) ~ su(4)
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Correlation functions in N=4 SYM

3

1

2

initial data: three states with definite conformal dimensions and psu(2,2|4) charges
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the three point function  
dual to three-string interaction 
is the basic building block for  

higher point correlation function 
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• two and three point functions are determined by conformal invariance 
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Ři,i+1(u) = t1/2
uT sp

i � (T sp

i )�1

tu� 1

q⇤ = (t⇤)1/2 = q

! ! e2

Kijzi = zjKij

(⇡/N)2

sin2(⇡z/N)

N ! 1

hOA(x)OB(y)i =
�AB

|x� y|2�A(g)

References

34

spin chain energy 



The hexagon decomposition of correlation 
functions

[Basso, Komatsu, Vieira, 15]

• the asymptotic part of the three point function can be written as a sum over partitions for  
the three groups of rapidities

data of the three operators, namely the charges of the global symmetry group PSU(2, 2|4)
and the charges of the infinite symmetry group associated to integrability. The latter ones,

dependent on the coupling constant g, can be encapsulated, at least in the regime of in the

small g, by three collections of rapidities u1,u2,u3, each associated to one of the operators

O1(x1), O2(x2), O3(x3). At g = 0 the three sets of rapidities are determined by Bethe

ansatz equations for three PSU(2, 2|4) spin chains with lengths L1, L2 and L3. At non-zero

values of the coupling constant g, the spin chains acquire long-range interaction and the

so-called asymptotic Bethe ansatz is not exact anymore. The long-range corrections can be

interpreted as coming from virtual particles circulating in the so-called mirror channel, where

time and space are interchanged. These virtual particles are called mirror particle. Their

contribution to the spectrum of conformal dimensions �(g) can be exactly determined via

a set of functional equations known under the name of Quantum Spectral Curve, equivalent

to a system of Thermodynamic Bethe Ansatz equations. In the large volume limit the

contribution of the virtual particles is exponentially small.

Through the AdS/CFT correspondence [23], the three-point function is dual to a three-

string interaction connecting three strings with energies �1, �2, �3. The rapidities can

be then associated to the momenta of excitation modes, or magnons, propagating on the

1+1 dimensional worldsheet. For a particular subset of the operators, the BPS operators,

the conformal dimensions do not depend on the coupling constant g and the associated

rapidities are trivial (i.e. infinite). We are going to use a bullet to symbolise a non-BPS

operator and an empty circle to denote the BPS one with the same global charges. To

remove some trivial combinatorial factors we are dividing the three-point function by the

three-point function of the corresponding BPS operators, e.g.

C••�
123 ⌘ C••�

123

C���
123

p
N1N2 (2.2)

denotes the three-point function of two non-BPS and one BPS operator. In the above

formula,
p
Ni are the normalisation of the three incoming states, which can be expressed

in terms of the Gaudin determinants. In this work we are not considering the explicit

expression of the norms, and prefer considering the unnormalised structure constants C123
defined in (2.2) instead of the normalised structure constants C123. The semiclassical limit

of the norms in the absence of mirror correction was taken in [7, 24].

An all-loop prescription to compute the three-point function was given in [1]. The

guiding principle of the proposal is to split the worldsheet of the three interacting strings

into two overlapping hexagons, and then sum over all possible ways of distributing the

magnon excitations between the two hexagons, u1 = ↵1 [ ↵̄1,u2 = ↵2 [ ↵̄2,u3 = ↵3 [ ↵̄3

as illustrated in figure 2.1. In the absence of the mirror corrections (asymptotic limit) the
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answer is

Figure 2.1: A possible arrangement of excitations for the hexagon form factors.

[C•••
123 ]

asympt =
X

↵i[↵̄i=ui
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(�1)|↵1|+|↵2|+|↵3| w`31(↵1, ↵̄1)w`12(↵2, ↵̄2)w`23(↵3, ↵̄3)

⇥ H(↵1|↵3|↵2)H(↵̄2|↵̄3|↵̄1) . (2.3)

Explicit expressions for transition factors w`i�1,i(↵i, ↵̄i) and hexagon form factors H(↵1|↵3|↵2)

were proposed in [1] and will be given later. The building blocks of the hexagon form factors

are the bi-local hexagon amplitudes h(u, v) proposed in [25] and the elements of the Beisert’s

scattering matrix [26]. Here we are going to consider only structure constants of operators

from the rank-one sectors su(2) and sl(2) and we are therefore not going to use the matrix

structure of the hexagon form factors.

Figure 2.2: Vacua and su(2) excitations in the reservoir picture of BKV [1].

To connect with the weak-coupling picture and the corresponding notations, it is useful

to represent the three-point function we consider in the reservoir picture of [1] represented
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Figure 2.2: Vacua and su(2) excitations in the reservoir picture of BKV [1].
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• sewing back over the black lines: insertion of an arbitrary number of virtual particles
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data of the three operators, namely the charges of the global symmetry group PSU(2, 2|4)
and the charges of the infinite symmetry group associated to integrability. The latter ones,

dependent on the coupling constant g, can be encapsulated, at least in the regime of in the

small g, by three collections of rapidities u1,u2,u3, each associated to one of the operators

O1(x1), O2(x2), O3(x3). At g = 0 the three sets of rapidities are determined by Bethe

ansatz equations for three PSU(2, 2|4) spin chains with lengths L1, L2 and L3. At non-zero

values of the coupling constant g, the spin chains acquire long-range interaction and the

so-called asymptotic Bethe ansatz is not exact anymore. The long-range corrections can be

interpreted as coming from virtual particles circulating in the so-called mirror channel, where

time and space are interchanged. These virtual particles are called mirror particle. Their

contribution to the spectrum of conformal dimensions �(g) can be exactly determined via

a set of functional equations known under the name of Quantum Spectral Curve, equivalent

to a system of Thermodynamic Bethe Ansatz equations. In the large volume limit the

contribution of the virtual particles is exponentially small.

Through the AdS/CFT correspondence [23], the three-point function is dual to a three-

string interaction connecting three strings with energies �1, �2, �3. The rapidities can

be then associated to the momenta of excitation modes, or magnons, propagating on the

1+1 dimensional worldsheet. For a particular subset of the operators, the BPS operators,

the conformal dimensions do not depend on the coupling constant g and the associated

rapidities are trivial (i.e. infinite). We are going to use a bullet to symbolise a non-BPS

operator and an empty circle to denote the BPS one with the same global charges. To

remove some trivial combinatorial factors we are dividing the three-point function by the

three-point function of the corresponding BPS operators, e.g.

C••�
123 ⌘ C••�

123

C���
123

p
N1N2 (2.2)

denotes the three-point function of two non-BPS and one BPS operator. In the above

formula,
p
Ni are the normalisation of the three incoming states, which can be expressed

in terms of the Gaudin determinants. In this work we are not considering the explicit

expression of the norms, and prefer considering the unnormalised structure constants C123
defined in (2.2) instead of the normalised structure constants C123. The semiclassical limit

of the norms in the absence of mirror correction was taken in [7, 24].

An all-loop prescription to compute the three-point function was given in [1]. The

guiding principle of the proposal is to split the worldsheet of the three interacting strings

into two overlapping hexagons, and then sum over all possible ways of distributing the

magnon excitations between the two hexagons, u1 = ↵1 [ ↵̄1,u2 = ↵2 [ ↵̄2,u3 = ↵3 [ ↵̄3

as illustrated in figure 2.1. In the absence of the mirror corrections (asymptotic limit) the
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The hexagon as a non-local form factor

• the hexagon can be seen as the infinite-volume form factor of a twist-like operator 
inducing a curvature excess of 180  degrees [Cardy, Castro-Alvaredo, Doyon, 06]
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Figure 2.3: The physical and bottom mirror excitations.

2.2 Results and comparison with strong coupling

In the case when the incoming operators correspond to semiclassical strings, the lengths

L1, L2, L3 of the three chains and the numbers of the magnon excitations M1, M2, M3 are

large.4 The semiclassical limit is controlled by a small parameter ✏ such that ✏Li and ✏Mi

remain finite when ✏ ! 0. This limit exists for any value of the ’t Hooft coupling g. In

addition to the semiclassical limit, one can take the strong coupling limit where the e↵ective

coupling g0 = ✏g remains finite when ✏ ! 0.

In general, we need to take into account the partitions of three sets of physical rapidities

and sum over all mirror excitations on the mirror edges, which is still open. Here we report

some modest progress, by taking the sum and the semiclassical limit in three particular

cases when the operators belong to the rank-one su(2) and sl(2) sectors:

• the expression of the asymptotic part of the structure constant for one non-BPS and

two BPS operators, [C•��
123 ]

asympt for any value of the coupling constant,

• the expression of the asymptotic part of the I-I-II structure constant5 for three non-

BPS operators belonging to two di↵erent su(2) or sl(2) sectors, [C•••
123 ]

asympt, for any

value of the coupling constant,

• the expression of the bottom mirror contribution for one non-BPS and two BPS

operators, [C•��
123 ]

bottom in the strong coupling limit.

4Based on the experience with the spectrum [36], we may expect that, for sl(2), the results for the

semiclassical strings can be applied safely to small values of ✏Li.
5 The I-I-I type structure constant remains out of reach of our method for the moment.
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“mirror transformation”, equivalent to                       in relativistic theories 
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• solution from bootstrap (form factor axioms) 

dynamical part
matrix part

3
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h(u3� , v2� , w) = H

✓
w v �
� u �

◆

FIG. 4. A mirror transformation � : u ! u� moves an
excitation to a neighbouring edge. As illustrated here on
a simple example, we can iterate it to relate a creation
amplitude h with all particles at the top to the most
general hexagon process H where excitations can inhabit
any of the six edges.

Furthermore, combining symmetry arguments with el-
ementary bootstrap considerations hints at a simple and
natural generalization to multi-particle states. The con-
jecture is that the N -magnon hexagon amplitude (1) is
exactly given by
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where �A = �a| ↵ is a state in the fundamental SU(2|2)
multiplet and S is Beisert SU(2|2) S-matrix [32] with
dressing phase set to one. (f is a simple integer which
accommodates for the grading [34].) The multi-particle
formula (2) identifies the hexagon form factor with the
(factorized) scattering matrix elements up to the scalar
factor hij = h(ui, uj), which is a function of two magnon
rapidities. The latter can be constrained by crossing sym-
metry and argued to be given by
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where x± = x(u ± i

2 ) are familiar Zhukowsky variables
(with u/g = x + 1/x) and �12 is (half) the BES dressing
phase [35]. Accordingly, the hexagon form factor is as
depicted in figure 5, and its evaluation is straightforward,
as exemplified in appendices K and L. It shows, in the
end, some similarities with the pentagon transitions for
null Wilson loops, in that it factorizes into a dynamical
part (the product of h’s) and a matrix part (the S-matrix
element). An important di↵erence is that the relevant
symmetry group for the null Wilson loops was just SO(6)
whereas here it involves a more sophisticated supergroup,
leading, as a byproduct, to a coupling dependent matrix
part.

Relations (2) and (3) finalize our proposal, which pro-
vides, in principle, a complete non-perturbative recipe
for computing structure constants of any planar gauge
invariant operators in this theory. Of course, it is cru-
cial to sharpen it and verify its predictions on the sim-
plest possible examples. This is what the rest of paper is
about.
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III. PROPERTIES OF THE HEXAGON ANSATZ

In this section we elaborate on the properties of the
hexagon ansatz (2).

An equivalent way of thinking about our problem is by
introducing a vertex hh| which can be contracted against
three spin-chain states, like in [19–21], e.g.
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, (4)

for a single magnon on top of the first spin chain. We
use here an invariant notation where each operator-ket is
thought of as being made out of excitations on top of the
same BMN Z-vacuum. Implicit in there is the need to
actually rotate (and translate) the kets in order to get a
non-zero result compatible with R-charge conservation.
There are several realization of these rotations, one of
which is discussed in appendix B and applied (up to a
small twist) in the next section.

The symmetry group of each ket in (4) is the usual
one for excitations on top of the BMN vacuum, that is
the extended PSU(2|2)2 introduced by Beisert in [32].
The intersection of the three symmetry groups for the
three rotated vacua is a single PSU(2|2), which can be
thought of as a diagonal subgroup of symmetries of the
BMN vacuum, as explained in appendix B. This group
is nothing but the supersymmetrization of the obvious
bosonic group O(3)Lorentz ⇥ O(3)R�charge that preserves
3 points in space time and 3 (generic) null vectors in
‘R-space’.

As mentioned earlier, for low number of magnons,
this symmetry leaves very little freedom. For a single
magnon, as explained in appendix C, it fixes the form
factor to be [36]
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such that the only non-zero one point functions are those
corresponding to so-called longitudinal magnons, that is,
the two scalars Y = �12̇, Ȳ = �21̇ and the two deriva-
tives D = D12̇, D̄ = D21̇ polarized along the direction of
the three-point function. The relative weight N is rather
arbitrary, since it absorbs the normalization freedom be-
tween states of the PSU(2|2)2 n R3 magnon irrep (see
e.g. (C6)). It can be fixed to N = i in the commonly
used string frame normalization and to N = 1 in the

H

[Beisert, 06]

3

u3� v2� w

h(u3� , v2� , w) = H

✓
w v �
� u �

◆

FIG. 4. A mirror transformation � : u ! u� moves an
excitation to a neighbouring edge. As illustrated here on
a simple example, we can iterate it to relate a creation
amplitude h with all particles at the top to the most
general hexagon process H where excitations can inhabit
any of the six edges.

Furthermore, combining symmetry arguments with el-
ementary bootstrap considerations hints at a simple and
natural generalization to multi-particle states. The con-
jecture is that the N -magnon hexagon amplitude (1) is
exactly given by

h
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element). An important di↵erence is that the relevant
symmetry group for the null Wilson loops was just SO(6)
whereas here it involves a more sophisticated supergroup,
leading, as a byproduct, to a coupling dependent matrix
part.
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the two scalars Y = �12̇, Ȳ = �21̇ and the two deriva-
tives D = D12̇, D̄ = D21̇ polarized along the direction of
the three-point function. The relative weight N is rather
arbitrary, since it absorbs the normalization freedom be-
tween states of the PSU(2|2)2 n R3 magnon irrep (see
e.g. (C6)). It can be fixed to N = i in the commonly
used string frame normalization and to N = 1 in the



The hexagon as building block for correlation 
functions
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Figure 1: Hexagonalization of a four-point function: A planar four-point function can be
represented as a surface with four holes. The idea of hexagonalization is to cut it into
four hexagonal patches as depicted above. The contribution from each patch is given by a
hexagon form factor. It is conceptually di↵erent from the usual operator product expansion.
(The colors of the figure represent the two places where this work was done.)

limits of higher-point functions, one can study interesting physical phenomena1 which cannot
be explored just by looking at individual two- and three-point functions.

The situation is more interesting, and at the same time, more intricate in large N confor-
mal field theories such as planar N = 4 supersymmetric Yang-Mills theory (N = 4 SYM).
This is because the operator product expansion (OPE) and the large N limit are not quite
“compatible”: Basic observables in large N CFT’s are correlation functions of single-trace
operators. Even at large N , the OPE series of these correlators contains not only single-
trace operators but also multi-trace operators. Therefore one cannot compute higher-point
functions just by knowing two- and three-point functions of single-trace operators2.

This appears to be an inconvenient truth for integrability practitioners: Owing to the
remarkable progress in the last ten years, we now have powerful nonperturbative methods to
study the spectrum [5] (see [6] for the current state of the art), and the structure constants [7]
of planar N = 4 SYM. However these approaches are so far limited to single-trace operators.
The aforementioned fact seems to indicate that we must extend these methods to multi-trace
operators before studying higher-point functions.

This however is not the case: In this paper, we propose an alternative route to higher-
point functions, which does not necessitate explicit information on multi-trace operators.
The key idea is to decompose the correlation functions not to two- and three-point functions,
but to more fundamental building blocks called the hexagon form factors. The hexagon form
factors were introduced in [7] as the building blocks for the three-point function of single-
trace operators. They compute a “square-root” of the structure constant, which is associated
with a hexagonal patch of the string worldsheet. The purpose of this work is to show that

1Examples of such interesting physics discussed recently are the Regge limit [1], the emergence of the
bulk locality [2] and chaos [3].

2There are certain limits where contributions from multi-trace operators are suppressed. In such limits,
one can construct (approximate) higher-point functions from two- and three-point functions of single trace
operators. See [4] for more detailed discussions.
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   [Fleury, Komatsu, 16; also Eden, Sfondrini, 16]
• four point function by hexagon decomposition: 

• sewing back hexagons imply insertion of an arbitrary number of virtual particles   
- in general the sum over virtual particles is not easy to perform, except in the case 
of the octagon, see below

• when a leg is formed by sewing different hexagons, divergences appear; a 
systematic regularisation was not yet achieved, but important results were 
conjectured in [Basso, Georgoudis, Klemenchuk-Sueiro, 22]



Four point functions: the “simplest” correlator

• four point function: dependence on two cross ratios: 

Figure 8: Weight factor and symmetry. In the second hexagon H2, the operators are posi-
tioned at 0, (z, z̄) and 1. To obtain this configuration starting from the “canonical one”,
one needs to perform the transformations, e�D log |z| and e

iL� as depicted in the figure. Note
that these transformations leave the points 0 and 1 invariant.

On the other hand, Ĥ2 is not canonical since the position and the polarization of O2 in this
frame are given in terms of the conformal and the R-symmetry cross ratios as

O2 : x2 = (0,Re(z), Im(z), 0) ,

Y2 = (2/|↵|)((1 + ↵↵̄)/2, i(1� ↵↵̄)/2, iIm(↵), iRe(↵), 0, 0) ,
(22)

where z and ↵ are defined in a standard way as follows:
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2
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34

y213y
2
24
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14y

2
23

y213y
2
24

. (23)

To obtain the configuration for Ĥ2 starting from the canonical configuration, we need to
perform the dilatation and the rotation (see figure 8),

e
�D log |z|

e
iL�

, (24)

where L and � are given by13

L =
1

2
(L1

1 � L
2
2 � L

1̇
1̇ + L

2̇
2̇) , e

i� =

r
z

z̄
. (25)

The same argument applies also to the R-symmetry part and the full transformation which
brings Ĥ to Ĥ2 is

g = e
�D log |z|

e
iL�

e
J log |↵|

e
iR✓ = e

�(D�J) log |z|
e
J(log |↵|�log |z|)

e
iL�

e
iR✓

, (26)

where J is the R-charge which rotates Z and Z̄ and R and ✓ are the R-symmetry analogue
of L and �:

R =
1

2
(R1

1 �R
2
2 �R

1̇
1̇ +R

2̇
2̇) , e

i✓ =

r
↵

↵̄
. (27)

Thus, the weight factor can be determined as

W = e
�2ip̃ log |z|

e
J 'e

iL �e
iR ✓ , (28)

13Here L
↵
� and L̇

↵̇
�̇ are Lorentz generators contained in psu(2|2)2.
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We present the full form of a four-point correlation function of large BPS operators in planar
N = 4 Super Yang-Mills to any loop order. We do this by following a bootstrap philosophy based
on three simple axioms pertaining to (i) the space of functions arising at each loop order, (ii) the
behaviour in the OPE in a double-trace dominated channel and (iii) the behaviour under a double
null limit. We discuss how these bootstrap axioms are in turn strongly motivated by empirical
observations up to nine loops unveiled through integrability methods in our previous work [9] on
this simplest correlation function.

I. INTRODUCTION

Integrability methods have shaped a new path for the
explicit evaluation of correlators of local operators in pla-
nar N = 4 SYM [1–5] and also non-planar [6–8], specially
for four-point functions of large protected single-trace op-
erators. In [9] we used integrability-based methods to
find the loop corrections to the polarized four-point func-
tion we named as the simplest. This correlator consists
of four external protected operators with R-charge po-
larizations chosen as shown in figure 1. In the limit of
long operators1 (K � 1), we argued this four-point func-
tion admits a factorization into the tree level part which
carries all the dependence on the external scaling dimen-
sion K and the loop corrections which are given by the
squared of the function O (the octagon)

hO1O2O3O4i =


1

x2
12x

2
13x

2
24x

2
34

�K
2

⇥O
2(z, z̄) (1)

where the cross ratios are defined in terms of the space-
time positions as:

zz̄ = u =
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2
12x

2
34

x2
13x

2
24

and (1�z)(1�z̄) = v =
x
2
14x

2
23

x2
13x

2
24

In this paper we present some of the analytic properties
of the octagon O which follow from the explicit nine-loop
results in [9]. These properties include a restriction on
the space of functions that appear at any loop order and
the remarkable simplicity of the octagon in two di↵erent
kinematical limits: the OPE limit (z ! 1, z̄ ! 1) and
the double light-cone limit (z ! 0, z̄ ! 1).

We also state that these three analytic properties can
be used to uniquely define the octagon and with that

1
The rank of the gauge group Nc ! 1 is the largest parameter

followed by K. Then the planar correlator is expanded in powers

of the ’t Hooft coupling g2.

O1(0) O2(z)

O3(1) O4(1)

•

•

•

P
 in

•

•

•

P
 out

FIG. 1. The simplest four-point function with external opera-

tors O1(0, 0) = Tr(Z
K
2 X̄

K
2 )+cyclic permutations, O2(z, z̄) =

Tr(XK ), O3(1, 1) = Tr(Z̄K) and O4(1,1) = Tr(Z
K
2 X̄

K
2 )+

cyclic permutations. The Wick contractions form a perime-
ter with four bridges of width K

2 . According to Hexagonal-
izaiton [3] in the limit K � 1 the loop corrections are ob-
tained by summing over 2D intermediate multiparticle states
 in and  out on mirror cuts 1-4 and 2-3 respectively, with
both sums evaluating to O. Alternatively the octagon O rep-
resents the resummation of planar Feynman diagrams draw
inside(outside) the perimeter.

also the simplest correlator (1). We show how to solve
this bootstrap problem by first introducing a Steinmann
basis of Ladders which resolve two of the aforementioned
analytic properties. Then using the third property to
completely fix the coe�cients in an Ansatz constructed
with the Steinmann basis.
This bootstrap approach reproduces the explicit re-

sults obtained from perturbation theory and integrabil-
ity and allows us to easily extend them to arbitrary loop
order. We accompany this letter with an ancillary file
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• for BPS operators with large R-charges and particular  
polarisations: factorisation into two octagons [Coronado, 18]

• compute the octagon analytically by summing up the virtual particle contribution 
             Fredholm determinant [Kostov, Petkova, D.S., 19] 

• analysis of the Fredholm determinant in various regimes, including resurgent analysis 
[Belitsky, Korchemsky, 19-21; Bajnok, Boldis, Korchemsky, 24] 
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the space of functions that appear at any loop order and
the remarkable simplicity of the octagon in two di↵erent
kinematical limits: the OPE limit (z ! 1, z̄ ! 1) and
the double light-cone limit (z ! 0, z̄ ! 1).

We also state that these three analytic properties can
be used to uniquely define the octagon and with that

1
The rank of the gauge group Nc ! 1 is the largest parameter

followed by K. Then the planar correlator is expanded in powers

of the ’t Hooft coupling g2.

O1(0) O2(z)

O3(1) O4(1)

•

•

•

P
 in

•

•

•

P
 out

FIG. 1. The simplest four-point function with external opera-

tors O1(0, 0) = Tr(Z
K
2 X̄

K
2 )+cyclic permutations, O2(z, z̄) =

Tr(XK ), O3(1, 1) = Tr(Z̄K) and O4(1,1) = Tr(Z
K
2 X̄

K
2 )+

cyclic permutations. The Wick contractions form a perime-
ter with four bridges of width K

2 . According to Hexagonal-
izaiton [3] in the limit K � 1 the loop corrections are ob-
tained by summing over 2D intermediate multiparticle states
 in and  out on mirror cuts 1-4 and 2-3 respectively, with
both sums evaluating to O. Alternatively the octagon O rep-
resents the resummation of planar Feynman diagrams draw
inside(outside) the perimeter.

also the simplest correlator (1). We show how to solve
this bootstrap problem by first introducing a Steinmann
basis of Ladders which resolve two of the aforementioned
analytic properties. Then using the third property to
completely fix the coe�cients in an Ansatz constructed
with the Steinmann basis.
This bootstrap approach reproduces the explicit re-

sults obtained from perturbation theory and integrabil-
ity and allows us to easily extend them to arbitrary loop
order. We accompany this letter with an ancillary file
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Four point functions: the “simplest” correlator

The cross ratios now enter through the angle variables:

� = � i

2
log

⇣
z

z̄

⌘
✓ = � i

2
log

⇣
↵

↵̄

⌘
' =

1

2
log

⇣
↵↵̄

zz̄

⌘
(2.3)

and the correspondent conjugate charges are: the angular momentum L , the R-charges
R and J . Including also the momentum p conjugate to translation.

Using the details about the multi-particle mirror basis  and the hexagon form factors
hH| i provided in appendix A, we can express the octagon as a sum over the number of
particles n. Including an integral over the rapidity ui and a sum over the bound state
number ai for each particle. More precisely this is:

Ol(z, z̄,↵, ↵̄) = 1 +
1X

n=1

Xn(z, z̄,↵, ↵̄)⇥ In,l(z, z̄) (2.4)

where the unity stands for the vacuum contribution and the factor Xn that we name the
character is given by:

Xn(z, z̄,↵, ↵̄) =
(X+)n + (X�)n

2
(2.5)

with:
X+ = �(z � ↵)(z̄ � ↵)

↵
and X� = �(z � ↵̄)(z̄ � ↵̄)

↵̄
(2.6)

The n-particle sum and integral In,l is given by:

In,l(z, z̄) =
1

n!

1X

a1=1

· · ·
1X

an=1

Z
du1 · · ·

Z
dun

nY

j=1

µ̄aj (uj , l, z, z̄)⇥
nY

j<k

Pajak(uj , uk) (2.7)

The integrand contains the coupling dependence and is composed as follows:

• The one-particle effective measure µ̄ where we package the chemical potentials for
each particle:

µ̄a(u, l, z, z̄) =
1p
zz̄

sin a�

sin�
⇥ µa(u)⇥ e

�Ea(u) l ⇥ (zz̄)�i pa(u) (2.8)

where the one-particle measure µa(u),energy Ea(u) and momentum pa(u) are defined
in (A.2).

• The(abelian) symmetric product of two-particle hexagon form factors Pab(u, v) defined
in (A.8).

Two comments are in order regarding the simplicity of the integrand (2.7) and the
structure of the character (2.5):

• The matrix part simplifies: The hexagon form factors are in general complicated
tensors with as many su(2|2)2 flavour indexes as the number of particles. For a n-
particle state this matrix part is constructed multiplying n copies of the su(2|2) Beis-
ert’s S-matrix (see appendix A.2). Fortunately when contracting h |Hi and hH| i
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multiple integral over virtual particles: 
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one-particle measure: 
and the two-particle symmetric hexagon form factor is:

Pab(u, v) = K++
ab (u, v)K+�

ab (u, v)K�+
ab (u, v)K��

ab (u, v) (B.9)

with:

K±±
ab (u, v) =

x
[±a](u)� x

[±b](v)

1� x[±a](u)x[±b](v)
(B.10)

To perform the weak coupling expansion of the integrand we need the expansion of the
Zhuckovsky variable:

x
[±a] =

u± i
2 a

g
� g

u± i
2 a

� g
3

(u± i
2 a)

3
� 2 g5

(u± i
2 a)

5
� 5 g7

(u± i
2 a)

7
+O(g)9 (B.11)

This exhibits poles whose degree increases with each loop order. Likewise the integrand
inherits these poles for each of the variables of integration. In particular we do not obtain
extra poles coupling two rapidities. Differences of rapidities comming from (B.9) only
appear on the numerator so they can be easily expanded out to.

In order to make more explicit the pole structure of the integrand we propose the
following change of variables:

✓
u� i

2
a

◆
! 1

A�
and

✓
u+

i

2
a

◆
! 1

A+
(B.12)

Similarly we use other letters for other pairs of rapidity-bound state number, for instance:
B for (v, b), C for (w, c), etc.

Under this new notation the expansion in (3.2) looks like:

x
[±a](u) =

1

gA±
� gA± � g

3A3
± � 2 g5A5

± � 5 g7A7
± + O(g)9 (B.13)

Plugging in this latter expansion for each rapidity in the components (B.6),(B.7),(B.8) and
(B.9) we find the mirror integrand takes the schematic form:

stripped integrand =
1X

m=0

�
g
2
�m mX

k=0

log(zz̄)k ⇥ Polynomial(A,B, C · · · ) (B.14)

where stripped integrand is the integrand after we have stripped out the blue factors in
(B.4),(B.6),(B.7) for each rapidity. The expansion on log(zz̄) comes from the loop expansion
of (B.8). The function Polynomial is a polynomial on the variables (B.12). Schematically
for the n = 3 integrand it has the form:

Polynomial(A,B, C) = coef ⇥Am1

� An1

+ Bm2

� Bn2

+ Cm3

� Cn3

+ + · · · (B.15)

where the dots represent analog terms with different coefficients and exponents (mk, nk).
Now to go from the integrand (B.14) to the integral we just need to perform a re-

placement. Whenever we see a couple A�1A1 in (B.15) we replace it by the basis in (B.2)
as:

stripped integrand
restore blue factors,

perform sums and integrals
=) In,l

Am1

� An1

+ Bm2

� Bn2

+ Cm3

� Cn3

+

restore blue factors,
perform sums and integrals

=) Im1,n1
Im2,n2

Im3,n3
(B.16)
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two-particle interaction: 
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Determinant formula for the octagon form factor in N = 4 SYM
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We compute to all loop orders correlation function of four heavy BPS operators in N = 4 SYM
with special polarisations considered recently by Frank Coronado. Our main result is an expression
for the octagon form factor as determinant of a semi-infinite matrix. We find that at weak coupling
the entries of this matrix are linear combinations of ladder functions with simple rational coe�cients
and give the full perturbative expansion of the octagon.

I. INTRODUCTION

The discovery of integrability in the planar N = 4
SYM [1] initiated a ‘worldsheet’ approach powered by
the analytic tools developed for two-dimensional solv-
able models. In this approach a single-trace operator
is described as a state of a two-dimensional field theory
compactified on a circle. The state consists of a set of
physical excitations on the top of a ground state asso-
ciated to a half-BPS operator. By gauge-string duality,
this is also a closed string in the AdS5 ⇥ S

5 background.
The full spectrum of such operators has been obtained

for any value of the gauge coupling applying the integra-
bility techniques related to the Thermodynamic Bethe
Ansatz [2–4]. The computation of the OPE structure
constants needed a new theoretical input. It came with
the ‘hexagon proposal’ of Basso, Komatsu and Vieira [5].
The authors of [5] proposed to split the worldsheet of
a three-point function into two hexagonal patches, each
containing a curvature defect. The observables associ-
ated with the two hexagons are special form factors which
can be computed using the symmetries of the theory. The
prescription using a ‘hexagonalisation’ of the worldsheet
was then extended to the case of the four-point functions
[6–8] and to non-planar corrections [9, 10]. The hexagons
are glued back by inserting complete sets of virtual states
in the intermediate channels.

The contribution of virtual particles in the spectrum
of ‘heavy’ operators (i.e. with large dimensions) is sup-
pressed in the weak coupling limit. This is also the case
for the three-point functions of such operators. In the
strong coupling limit the virtual particles cannot be ne-
glected anymore, and in the cases amenable to analyti-
cal treatment their contribution is expressed in terms of
Fredholm determinants [11].

In the computation of the of four-point functions of
heavy operators by hexagonalisation, the virtual parti-
cles are not suppressed at weak coupling anymore [6]
and the evaluation of their contribution represents a chal-
lenge. Recently, Frank Coronado obtained some remark-
able results for the four-point functions of heavy half-BPS
operators with particular polarisations of the R-charges
[12, 13]. In that configuration, the four-point function
factorises into sum of products of the so called octagon

�

(0,0)

(�, �)

(z, z̄)(1,1) �1 �2

FIG. 1. A sketch of the octagon O`. The red
lines symbolise the mirror particles propagating
between the two hexagons, each one characterised
by a rapidity u and a bound state number a. Each
mirror particle has to pass across a ‘bridge’ com-
posed of ` physical particles.

form factors, or octagons. An octagon is obtained by glu-
ing together two hexagons by inserting a complete set of
virtual particles. The Boltzmann weights of the virtual
particles depend on the coordinates and the R-charge po-
larisations of the two hexagons, as well as on the length
` of the ‘bridge’ composed of tree-level propagators (the
vertical lines in Fig. 1).
The octagon was expressed in [12] as an infinite series

of non-singular contour integrals which can be evaluated
by residues. It is claimed that full perturbative expansion
of the octagon can be recast as a multilinear combination
of conveniently normalised ladder integrals f1, f2, ... [14],
see equation (27) for their definition,

O` = 1 +
1X

n=1

Xn

1X

J=n(n+`)

g
2J

⇥

X

j1+...jn=J

cj1,···jn fj1 · · · fjn ,

(1)

where the dependence on the polarisations is carried by
the factors

Xn = 1
2

�
(X+)n + (X�)n

�
(2)

and the coe�cients cj1...jn are rational numbers to be
determined. The conjectured form of the perturbative

more general setting: octagon  
with a bridge of length l



Exact results for the octagon

convenient parametrisation for the cross ratios:
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The momentum and the energy of the physical particles of type a are given by

pa(u) = �i(Da � D
�a) log x, Ea(u) = � ig

2

�
D
a � D

�a
�
(x� 1

x
) , (1.10)

where D = ei@u/2 is the shift operator, to be used repeatedly in the following,

D : f(u) ! f(u+ i/2). (1.11)

For some computations this operator representation of functions with shifted arguments
can be quite efficient. We will use sometimes the commonly accepted notations,

f(u± ia/2) = f [±a](u) = D
±af(u) = f(u)D

±a
. (1.12)

We are interested in summing over the particles in the mirror dynamics whose energy
and momentum are given by

p̃a(u) =
1
2g (D

a + D
�a) (x� 1

x), Ẽa(u) = (Da + D
�a) log x. (1.13)

We consider an octagon with four physical and four mirror edges with the corresponding
BMN vacuum at each physical edge, as shown schematically in figure 1. The octagon is
obtained by gluing the hexagons H1 and H2 along the common edge (0, 0)–(1,1) by
inserting a complete set of virtual states  with energies Ẽ . A state  contains an arbitrary
number of fundamental particles and their bound states transforming in the skew-symmetric
representations of psu(2|2)⇥psu(2|2). Symbolically

O` =
X

 

hH2| i e�Ẽ ` h |H1i. (1.14)

To write the explicit expression one should bring the two hexagon operators to the canonical
hexagon H. The dependence on the cross ratios in the coordinate and flavour spaces appears
through the similarity transformations H1 ! H and H2 ! H:

O`(z, z̄,↵, ↵̄) =
X

 

hH| ie�Ẽ ` e2ip̃ ⇠ eiL � eiR ✓ eiJ 'h |Hi. (1.15)

The parameters �, ⇠, ✓,' conjugated to L,p,R,J are related to the cross ratios in the
Minkowski and in the flavour spaces, eq. (1.6), as

z = e�⇠+i�, z̄ = e�⇠�i�,

↵ = e'�⇠+i✓, ↵̄ = e'�⇠�i✓.
(1.16)

An n-particle virtual state  is completely characterised by the rapidities and the
bound state numbers (uj , aj) of the individual particles (j = 1, ..., n). Taking into account
the explicit form of the hexagon form factors, one writes (1.15) as the following series of
multiple integrals,

O` =
1X

n=0

1

n!

X

a1,...,an�1

Z nY

j=1

duj
2⇡

(�1)aj µaj (uj , `, z, z̄) W
matrix
a1...an

nY

j<k

H̃aj ,ak(uj , uk) . (1.17)
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[Kostov, Petkova, D.S., 19] simplified by [Belitsky, Korchemsky, 19]

|{n}i =
NX

k=1

!nk  +

k |0i

|{n1, n2}i =
NX

k1<k2

Pn1,n2(!
k1 ,!k2)  +

k2
 +

k1
|0i

V (zi, zj) =
zizj

(zi � zj)2
= � 4

sin2 ⇡(i� j)/N

q 6= 1

ek = (f+

k + f+

k+1
)(fk + fk+1)

Hl =
[N ]q
N

NX

i<j

V(i� j) Sl
[i,j] , Hr =

[N ]q
N

NX

i<j

V(i� j) Sr
[i,j] , (138) qHSL

V(k) ⌘ 1

(q!k � q�1)(q!�k � q�1)
=

1
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This form of the psu(2|2) characters follows from the generating function
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The final expression of the series expansion for the octagon takes a form resembling a
Coulomb gas of dipole charges
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2
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The multiple contour integrals were evaluated by residues order by order up to n = 4 in [2].
The perturbative result for the octagon obtained in [2] matched the five loops results in [23]
obtained previously using the conformal symmetry, the hidden dual conformal symmetry
and analytic bootstrap conditions. As explained before, it allows to extend these results to
any loop order.

1.3 Summary of the results
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Based on the representation of the series (1.26) as Fredholm pfaffian, explained in sec-
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Bessel kernel

• the octagon kernel is a rather universal object showing up in other instances, e.g.

- circular Wilson loop in N=4 SYM 
- sphere partition function in N=2 Z2 orbifold SYM 
- two-and three-point function of twisted BPS operators in the above theory 

STra 1a ⇥ STra ⌧a = 0

eKaa(u, u) = �i STra⌦b{Sba(v
�, u�) ⌧a @uSab(u

�, v�)}|v!u; b!a , (146)
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N=2 Z2 orbifold theory

• a version of N=4 SYM where the sphere part is orbifolded by a Z2 twist 
• the gauge group is                               and the fields are                     matrices 
• same field content as N=4 SYM, with definite action of the twist:
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• expected to be integrable:  
               - Bethe Ansatz equations [Beisert, Roiban, 05];  

                 - twisted magnons [Gadde, Rastelli, 10]
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…

• results from localisation:  
               - sphere partition function            matrix model [Pestun 07,…, 
                 Beccaria, Korchemsky, Tseytlin, 22]  

                 - two point functions of twisted BPS ops [Beccaria, Billo, Galvagno, Hasan, Lerda, 20,…] 

                 - three point functions of (twisted) BPS [Billo, Frau, Lerda, Pini, Vallarino, 22,…] 
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• symmetry reduced from 

Aµ = ⌧ Aµ ⌧ , {Z, Z̄} = ⌧ {Z, Z̄} ⌧ , {X, Y, X̄, Ȳ } = �⌧ {X, Y, X̄, Ȳ } ⌧ . (143)
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N=2 Z2 orbifold theory
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• BPS (vacuum) sectorAµ = ⌧ Aµ ⌧ , {Z, Z̄} = ⌧ {Z, Z̄} ⌧ , {X, Y, X̄, Ȳ } = �⌧ {X, Y, X̄, Ȳ } ⌧ . (143)
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untwisted 

twisted

• two-point functions (from localisation + perturbative checks [Galvagno, Preti, 20])

with T = 0, 1 for the untwisted and twisted sector respectively. The level matching condition

is given by

e2⇡iT s0/2
7Y

j=1

KjY

k=1

uj,k + iVj/2

uj,k � iVj/2
= 1 , (2.2)

where for the "Beauty" Dynkin diagram s = (0|0, 0, 0,�1,+2,�1, 0), the first index being

s0, and Vj = �j,4. Moreover, the condition on the total twist, alluded to before, is given by

e2⇡iLs0/2
7Y

j=1

e2⇡iKjsj/2 = 1 or
7X

j=1

Kjsj = 0 mod 2 . (2.3)

3 Results for the correlation function of BPS operators from localisation
and the matrix model

In [? ] and previous references, two- and extremal three-point correlation function of BPS

operators are computed, using results from localisation. In the N = 4 SYM-compatible

notations we have

Uk(x) =
1
p
2
Tr Zk(x) , Tk(x) =

1
p
2
Tr ⌧Zk(x) , (3.1)

Ūk(x) =
1
p
2
Tr Z̄k(x) , T̄k(x) =

1
p
2
Tr ⌧ Z̄k(x)

The factor 1/
p
2 appears because of the doubling of the size of the matrix fields, e.g Z(x) =

diag(Z0(x), Z1(x)). Here we are using the complex fields Z and Z̄. The dimension of

both twisted and untwisted BPS operators is unchanged, �Uk = �Tk = k, however the

coefficient multiplying the space dependence can depend on the coupling constant. We use

the definitions

hUk(x)Ūk(y)i =
GUk

|x� y|2k
, hTk(x)T̄k(y)i =

GTk

|x� y|2k
, (3.2)

Among the extremal three point functions, the following combinations are non-zero

hUk(x)U`(y)Ūp(z)i =
GUk,U`,Ūp

|x� z|2k|y � z|2`
, (3.3)

hUk(x)T`(y)T̄p(z)i =
GUk,T`,T̄p

|x� z|2k|y � z|2`
,

hTk(x)T`(y)Ūp(z)i =
GTk,T`,Ūp

|x� z|2k|y � z|2`
,

where p = k + `. Among the coefficients, those containing only the untwisted fields do not

depend on the coupling constant,

GUk = kNk
⌘ Gk , GUk,U`,Ūp

=
k`p
p
2
Np�1

⌘ Gk,`,p . (3.4)
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Contents

1 Fields and symmetries

Compared with the N = 4 SYM theory, the gauge group is SU(Nc)⇥SU(Nč) with Nc = Nč,

and the fields can be represented as block (Nc+Nč)⇥(Nc+Nč) matrices. The Z2 symmetry

permutes the two components of the gauge group. The action of the Z2 group can be

implemented introducing the element ⌧ with

⌧ =

 
1Nc⇥Nc 0

0 �1Nč⇥Nč

!
(1.1)

Under this action, we have

Aµ = ⌧ Aµ ⌧ , {Z, Z̄} = ⌧ {Z, Z̄} ⌧ , {X,Y, X̄, Ȳ } = �⌧ {X,Y, X̄, Ȳ } ⌧ . (1.2)

Half of the fermions are even and half are odd under the action of Z2. The SU(4) symmetry

of N = 4 SYM theory is broken to SU(2)⇥SU(2) by the twist. In the spin chain oscillator

representation, if the field Z is represented by c†3c
†
4 |0i, then the su(2) algebras which are

preserved are those acting on fermions with indices 3, 4 and 1, 2 respectively. The action

of the twist would therefore multiply the fermionic operators with indices 1, 2 by �1. The

superconformal group SU(2, 2) (and therefore the boson oscillators) is not affected by the

twist. This rule indicates which fermions are even and which are odd under the Z2 action.

The gauge invariant operators can be twisted by introducing ⌧ into the trace, e.g.

O = Tr ⌧ZZZ̄XXY X̄ . . . (1.3)

Given the properties (??) of the fields with respect to the Z2 action, only operators with

an even number of odd fields will survive.

2 Bethe Ansatz equations

Beisert and Roiban [? ] wrote down the Bethe ansatz equations for the tree-level dilatation

operator of several twisted theories. For the Z2 twisted case these equations read

e2⇡iT sj/2

✓
uj,k � iVj/2

uj,k + iVj/2

◆L 7Y

j0=1

Kj0Y

k0=1
(j0,k0) 6=(j,k)

uj,k � uj0,k0 + iMj,j0/2

uj,k � uj0,k0 � iMj,j0/2
= 1 , (2.1)
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Aµ = ⌧ Aµ ⌧ , {Z, Z̄} = ⌧ {Z, Z̄} ⌧ , {X, Y, X̄, Ȳ } = �⌧ {X, Y, X̄, Ȳ } ⌧ . (143)

Uk(x) =
1p
2
TrZk(x) =

1p
2
Tr

�
ZL

0
+ ZL

1

�
,

Tk(x) =
1p
2
Tr ⌧Zk(x) =

1p
2
Tr

�
ZL

0
� ZL

1

�
,

Ūk(x) =
1p
2
Tr Z̄k(x) , T̄k(x) =

1p
2
Tr ⌧ Z̄k(x)

GTk
= Gk

det(1�Kk+2)

det(1�Kk)
(144)
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N=2 Z2 orbifold theory

• three-point functions (extremal) [Billo, Frau, Lerda, Pini, Vallarino, 22]

with T = 0, 1 for the untwisted and twisted sector respectively. The level matching condition

is given by

e2⇡iT s0/2
7Y

j=1

KjY

k=1

uj,k + iVj/2

uj,k � iVj/2
= 1 , (2.2)

where for the "Beauty" Dynkin diagram s = (0|0, 0, 0,�1,+2,�1, 0), the first index being

s0, and Vj = �j,4. Moreover, the condition on the total twist, alluded to before, is given by

e2⇡iLs0/2
7Y

j=1

e2⇡iKjsj/2 = 1 or
7X

j=1

Kjsj = 0 mod 2 . (2.3)

3 Results for the correlation function of BPS operators from localisation
and the matrix model

In [? ] and previous references, two- and extremal three-point correlation function of BPS

operators are computed, using results from localisation. In the N = 4 SYM-compatible
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p
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1
p
2
Tr ⌧ Z̄k(x)

The factor 1/
p
2 appears because of the doubling of the size of the matrix fields, e.g Z(x) =

diag(Z0(x), Z1(x)). Here we are using the complex fields Z and Z̄. The dimension of

both twisted and untwisted BPS operators is unchanged, �Uk = �Tk = k, however the

coefficient multiplying the space dependence can depend on the coupling constant. We use

the definitions

hUk(x)Ūk(y)i =
GUk

|x� y|2k
, hTk(x)T̄k(y)i =

GTk

|x� y|2k
, (3.2)

Among the extremal three point functions, the following combinations are non-zero

hUk(x)U`(y)Ūp(z)i =
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|x� z|2k|y � z|2`
, (3.3)
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,
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,

where p = k + `. Among the coefficients, those containing only the untwisted fields do not

depend on the coupling constant,

GUk = kNk
⌘ Gk , GUk,U`,Ūp

=
k`p
p
2
Np�1

⌘ Gk,`,p . (3.4)
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GUk,U`,Ūp
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Ūk(x) =
1
p
2
Tr Z̄k(x) , T̄k(x) =

1
p
2
Tr ⌧ Z̄k(x)

The factor 1/
p
2 appears because of the doubling of the size of the matrix fields, e.g Z(x) =

diag(Z0(x), Z1(x)). Here we are using the complex fields Z and Z̄. The dimension of

both twisted and untwisted BPS operators is unchanged, �Uk = �Tk = k, however the

coefficient multiplying the space dependence can depend on the coupling constant. We use

the definitions

hUk(x)Ūk(y)i =
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To remove the dependence on the normalisation of the operators, one defines the structure

constants as
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The two point function is given in terms of the semi-infinite matrix [? ]
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The conjugation does not matter for objects like diagonal elements, traces and determi-
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Here the parameters of the octagon are taken to the particular values ⇠ = 0,� = 0, ' =

0, ✓ = ⇡, or ↵ = ↵̄ = �1 so that the chemical potential like factor appearing in the octagon

kernel formulation becomes
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Another factor which enters into the game is the pre-factor �+ = �� = 4 in formula (2.6)

in [? ]. The parameter `, a priori a positive integer, corresponds to the bridge length.

With this notation, the result for the two-point functions of the twisted operators is
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where M00 means the element 00 of the matrix M and in the second line we have used the

Cramer’s rule for the elements of the inverse matrix. The R charge of the operator k plays

– 3 –

Aµ = ⌧ Aµ ⌧ , {Z, Z̄} = ⌧ {Z, Z̄} ⌧ , {X, Y, X̄, Ȳ } = �⌧ {X, Y, X̄, Ȳ } ⌧ . (143)
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Ūk(x) =
1
p
2
Tr Z̄k(x) , T̄k(x) =

1
p
2
Tr ⌧ Z̄k(x)

The factor 1/
p
2 appears because of the doubling of the size of the matrix fields, e.g Z(x) =

diag(Z0(x), Z1(x)). Here we are using the complex fields Z and Z̄. The dimension of

both twisted and untwisted BPS operators is unchanged, �Uk = �Tk = k, however the

coefficient multiplying the space dependence can depend on the coupling constant. We use

the definitions

hUk(x)Ūk(y)i =
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GTk,T`,Ūp
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N=2 Z2 orbifold theory
• compute the three-point function using integrability                hexagon decomposition 
                         [Ferrando, Komatsu, Lefundes, D.S.]
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GTk,T`,Ūp
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the role of the bridge length. The first terms in the expansion in the coupling constant

g2 = �/16⇡2
are

GTk = Gk


1� 4g2k
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◆
⇣(2k � 1) + 8kg2k+2

✓
2k + 2

k + 1

◆
⇣(2k + 1) + . . .

�
. (3.11)

In fact the whole one-wrapping contribution (single power of Kk) can be computed as

(Kk)00 = �8k
1X
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g2(k+n+m)⇣(2(m+ n+ k)� 1)
(�1)m+n

m!n!
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The non-trivial three point functions are given by
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while the normalised ones are given by
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4 What we know

We expect to be able to compute these quantities from the hexagon form-factor approach by

summing over the mirror magnons with the insertion of one or more twists. The two-point
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is given by the twist, Ta = STr ⌧a = 4a). Also, since there are no physical magnons the

contribution from the dressing phase disappears so that
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0-length bridge
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N=2 Z2 orbifold theory

• one-magnon wrapping: from contact terms of the two magnons in the two bridges

with T = 0, 1 for the untwisted and twisted sector respectively. The level matching condition

is given by

e2⇡iT s0/2
7Y

j=1

KjY

k=1

uj,k + iVj/2

uj,k � iVj/2
= 1 , (2.2)

where for the "Beauty" Dynkin diagram s = (0|0, 0, 0,�1,+2,�1, 0), the first index being

s0, and Vj = �j,4. Moreover, the condition on the total twist, alluded to before, is given by

e2⇡iLs0/2
7Y

j=1

e2⇡iKjsj/2 = 1 or
7X

j=1

Kjsj = 0 mod 2 . (2.3)

3 Results for the correlation function of BPS operators from localisation
and the matrix model

In [? ] and previous references, two- and extremal three-point correlation function of BPS

operators are computed, using results from localisation. In the N = 4 SYM-compatible

notations we have

Uk(x) =
1
p
2
Tr Zk(x) , Tk(x) =

1
p
2
Tr ⌧Zk(x) , (3.1)

Ūk(x) =
1
p
2
Tr Z̄k(x) , T̄k(x) =

1
p
2
Tr ⌧ Z̄k(x)

The factor 1/
p
2 appears because of the doubling of the size of the matrix fields, e.g Z(x) =

diag(Z0(x), Z1(x)). Here we are using the complex fields Z and Z̄. The dimension of

both twisted and untwisted BPS operators is unchanged, �Uk = �Tk = k, however the

coefficient multiplying the space dependence can depend on the coupling constant. We use

the definitions

hUk(x)Ūk(y)i =
GUk

|x� y|2k
, hTk(x)T̄k(y)i =

GTk

|x� y|2k
, (3.2)

Among the extremal three point functions, the following combinations are non-zero

hUk(x)U`(y)Ūp(z)i =
GUk,U`,Ūp

|x� z|2k|y � z|2`
, (3.3)

hUk(x)T`(y)T̄p(z)i =
GUk,T`,T̄p

|x� z|2k|y � z|2`
,

hTk(x)T`(y)Ūp(z)i =
GTk,T`,Ūp

|x� z|2k|y � z|2`
,

where p = k + `. Among the coefficients, those containing only the untwisted fields do not

depend on the coupling constant,

GUk = kNk
⌘ Gk , GUk,U`,Ūp

=
k`p
p
2
Np�1

⌘ Gk,`,p . (3.4)
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0-length bridge

-length bridge

is given by the twist, Ta = STr ⌧a = 4a). Also, since there are no physical magnons the

contribution from the dressing phase disappears so that

W1 =
X

a�1

Z 1

�1

du

2⇡
e�Ẽa(u)` K̃aa(u, u) , (4.9)

where

K̃ab(u, v) = Kab(u
� , v�) = �i STra⌦b{Sba(v

� , u�) ⌧a @uSab(u
� , v�)} , (4.10)

The computation of Kaa(u, u) is under way but it seems it structure is very close to

the derivative of the physical momentum,

K̃aa(u, u) = 2p0a(u)

✓
1�

2

1� 1/(x[+a]x[�a])2

◆
, p0a(u) = �i@u ln(x

[+a]/x[�a]) , . (4.11)

Let us compute first
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�
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!

⌘ �4i

Z 1

�1
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2⇡

�
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` (x, x)�K�
` (x, x)

�

To compute this object one moves the contour of integration in both terms such that the

branch cut of x[�a]
stays just above the integration contour (x[�a], x[+a]) ! (x[�0], x[+2a+0]).

Also, using that f [+2a](u) ⌘ f(u+ ia) = eia@uf(u) we have

K+
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(4.13)
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1
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Since
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or by inverting the Fourier transform

1
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dte±iutJ`(2gt) (4.15)

which means that

(K`)00 = �8`

Z 1

0
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t

et

(et � 1)2
J2
` (2gt) , (4.16)
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singularities in the hexagon weights 
[Basso, Gonçalves, Komatsu, 17]
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Uk(x) =
1p
2
TrZk(x) =

1p
2
Tr

�
ZL

0
+ ZL

1

�
,

Tk(x) =
1p
2
Tr ⌧Zk(x) =

1p
2
Tr

�
ZL

0
� ZL

1

�
,
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=

p
k`pp
2N

r
1 +

1

2`
g@g lnGT`

r
1 +

1

2k
g@g lnGTk

.

psu(2, 2|4) ! su(2, 2|2)⇥ su(2)

⌧ ! 1L ⇥ diag(1F ,�1B)R ⌘ 1L ⇥ ⌧R

V (zi, zj) =
zizj
zijzji

=
1

4 sin2 ⇡(i� j)/N

Hopen

XXZ
= �

N�1X

j=1

ej

psu(2|2)L ⇥ psu(2|2)R ! psu(2|2)L ⇥ [su(2)⇥ su(2)]R

1

(u� v � i✏)(u� v � i✏)
⇠ ⇡

✏
�(u� v)

H1

H2

1

✏

References

44

Aµ = ⌧ Aµ ⌧ , {Z, Z̄} = ⌧ {Z, Z̄} ⌧ , {X, Y, X̄, Ȳ } = �⌧ {X, Y, X̄, Ȳ } ⌧ . (143)
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Ūk(x) =
1p
2
Tr Z̄k(x) , T̄k(x) =

1p
2
Tr ⌧ Z̄k(x)

GTk
= Gk

det(1�Kk+2)

det(1�Kk)
(144)

K`+1 ⌘ Koct

`

�(t) =
et

(et � 1)2
r
1 +

1

2`
g@g lnGT`

=
det(1�K`+1)p

det(1�K`) det(1�K`+2)

CUk,T`,T̄p
=

p
k`pp
2N

r
1 +

1

2`
g@g lnGT`

r
1 +

1

2p
g@g lnGTp , (145)

CTk,T`,Ūp
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N=2 Z2 orbifold theory

• one-magnon wrapping 
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is given by the twist, Ta = STr ⌧a = 4a). Also, since there are no physical magnons the

contribution from the dressing phase disappears so that

W1 =
X
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du
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e�Ẽa(u)` K̃aa(u, u) , (4.9)
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� , u�) ⌧a @uSab(u
� , v�)} , (4.10)

The computation of Kaa(u, u) is under way but it seems it structure is very close to

the derivative of the physical momentum,

K̃aa(u, u) = 2p0a(u)
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To compute this object one moves the contour of integration in both terms such that the
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N=2 Z2 orbifold theory

• two-magnon contributions?

- the regularisation procedure is more subtle          start with a four point function and  
perform an OPE limit [Basso, IGST 21; Basso, Georgoudis, Klemenchuk-Sueiro, 22] 

-  the combinatorics of diagrams is more involved, but we obtained the necessary  

building blocks 
- draw inspiration from the fishnet case [Ferrando, Olivucci, unpublished] 

- factorisation of the bridge and wrapping contributions  



Summary and outlook

• Some correlation functions of local gauge invariant operators can be computed exactly 
in terms of Fredholm determinants, either by integrability techniques or by 
localisation 

•  The cases accessible by both are a good laboratory to study the interplay between the 
two approaches 

• We can hope to develop a more systematic understanding of the structure constants via 
from the analysis of wrapping (TBA-like) corrections and the connection with the 
SoV methods [Bercini, Homrich, Vieira, 22 & various groups, in progress] 

• Five point functions have a richer structure, being associated to more complicated 
Feynman diagrams - but their analysis is more complicated [Fleury, Komatsu, 17; Fleury, 
Gonçalves 20 & various groups, in progress]   


