Correlation functions in integrable supersymmetric four dimensional gauge theories

D. Serban

w/ I. Kostov, V. Petkova, arXiv:1903.05038, 1905.11467
in progress w/G. Ferrando, G. Lefundes, S. Komatsu

Mathematics and Physics of Integrability MATRIX, July 1-19, 2024

Correlation functions in planar $N=4$ SYM from integrability

- Integrability of planar $\mathbf{N}=\mathbf{4} \mathbf{S Y M}$ theory opened a window into exploring in a detailed and precise manner the gauge/string, or AdS/CFT correspondence
- Local, gauge-invariant operators with definite conformal dimension correspond to eigenstates of a long-range interacting (super)spin chain - and to a string propagating in the AdS5 x S5 background (described by a sigma model)

- Correlation functions of such operators can be computed with techniques inspired from 2d integrable field theories (non-local form factors)
- A practical motivation is to replace the tedious Feynman graph computations in gauge theories with more powerful techniques based on symmetries, and eventually to get a non-perturbative description for the gauge theory observables

AdS/CFT spin chain

- At weak coupling the spin chain is a supersymmetric, long range generalisation of the Heisenberg spin chain with a continuous parameter ('t Hooft coupling constant) $g=\frac{\sqrt{\lambda}}{4 \pi}$
- The spin states correspond to the fundamental fields of the gauge theory: $\operatorname{SU}(\mathrm{Nc})$ gauge fields, six real bosons and four complex fermions

$$
A_{\mu}, \Phi_{i} \text { and } \psi_{a} \quad i=1, \ldots, 6, \quad a=1, \ldots, 4
$$

- Bosonic symmetry $=\operatorname{so}(6) \mathrm{x} \operatorname{so}(4,2) \subset \mathrm{psu}(2,2 \mid 4)$; isometry of $\mathrm{S} 5 \times \mathrm{AdS} 5$

$$
\begin{aligned}
& \text { e.g. } \quad Z=\Phi_{1}+i \Phi_{2} \\
& X=\Phi_{3}+i \Phi_{4} \quad \text { form a } \operatorname{su}(2) \text { subsector of } \operatorname{so}(6) \sim \operatorname{su}(4)
\end{aligned}
$$

- Vacuum state \longleftrightarrow BPS operator e.g. $\operatorname{Tr} Z^{L}$
- Magnons have $\mathrm{psu}(2 \mid 2)_{\mathrm{L}} \times \mathrm{psu}(2 \mid 2)_{\mathrm{R}}$ flavours and scatter with Beisert's scattering matrix^2
- Sutherland solutions of the spin chain \longleftrightarrow rotating string solution
finite gap solution of the sigma model
- Finite size corrections obtained via a reformulation of the TBA, Quantum Spectral Curve

Correlation functions in $\mathbf{N}=4 \mathbf{S Y M}$

- two and three point functions are determined by conformal invariance

$$
\left\langle\mathcal{O}_{A}(x) \mathcal{O}_{B}(y)\right\rangle=\frac{\delta_{A B}}{|x-y|^{2 \Delta_{A}(g)}} \longleftarrow \text { spin chain energy }
$$

the three point function dual to three-string interaction is the basic building block for higher point correlation function

$$
\left\langle\mathcal{O}_{1}(x) \mathcal{O}_{2}(y) \mathcal{O}_{3}(z)\right\rangle=\frac{C_{123}(g)}{|x-y|^{\Delta_{1}+\Delta_{2}-\Delta_{3}}|x-z|^{\Delta_{1}+\Delta_{3}-\Delta_{2}}|y-z|^{\Delta_{2}+\Delta_{3}-\Delta_{1}}}
$$

initial data: three states with definite conformal dimensions and $\mathrm{psu}(2,2 \mid 4)$ charges

$$
\mathcal{O}_{\alpha}(x), \quad \alpha=1,2,3
$$

The hexagon decomposition of correlation functions

[Basso, Komatsu, Vieira, 15]

- the asymptotic part of the three point function can be written as a sum over partitions for the three groups of rapidities

$$
\mathbf{u}_{1}=\alpha_{1} \cup \bar{\alpha}_{1}, \mathbf{u}_{2}=\alpha_{2} \cup \bar{\alpha}_{2}, \mathbf{u}_{3}=\alpha_{3} \cup \bar{\alpha}_{3}
$$

- contribution of virtual particles exponentially suppressed if the bridges $\ell_{12}, \ell_{23}, \ell_{31} \gg 0$

$$
\ell_{i j}=\frac{1}{2}\left(L_{i}+L_{j}-L_{k}\right)
$$

- sewing back over the black lines: insertion of an arbitrary number of virtual particles

The hexagon as a non-local form factor

- the hexagon can be seen as the infinite-volume form factor of a twist-like operator inducing a curvature excess of 180 degrees [Cardy, Castro-Alvaredo, Doyon, 06]

γ
γ "mirror transformation", equivalent to $\quad \theta \rightarrow \theta+\frac{i \pi}{2}$ in relativistic theories
- solution from bootstrap (form factor axioms)

dynamical part
$\left|\chi_{i}^{A_{i}}\right\rangle: \operatorname{psu}(2 \mid 2)_{\mathrm{L}}$ state
$\left|\chi_{i}^{\dot{A}_{i}}\right\rangle: \operatorname{psu}(2 \mid 2)_{\mathrm{R}}$ state

The hexagon as building block for correlation functions

- four point function by hexagon decomposition:
[Fleury, Komatsu, 16; also Eden, Sfondrini, 16]
$\left\langle\mathcal{O}_{1} \mathcal{O}_{2} \mathcal{O}_{3} \mathcal{O}_{4}\right\rangle=$

- sewing back hexagons imply insertion of an arbitrary number of virtual particles - in general the sum over virtual particles is not easy to perform, except in the case of the octagon, see below
- when a leg is formed by sewing different hexagons, divergences appear; a systematic regularisation was not yet achieved, but important results were conjectured in [Basso, Georgoudis, Klemenchuk-Sueiro, 22]

Four point functions: the "simplest" correlator

- four point function: dependence on two cross ratios:

$$
z \bar{z}=\frac{x_{12}^{2} x_{34}^{2}}{x_{13}^{2} x_{24}^{2}}, \quad(1-z)(1-\bar{z})=\frac{x_{14}^{2} x_{23}^{2}}{x_{13}^{2} x_{24}^{2}}
$$

- for BPS operators with large R-charges and particular polarisations: factorisation into two octagons [Coronado, 18]

$$
\left\langle O_{1} O_{2} O_{3} O_{4}\right\rangle=\left[\frac{1}{x_{12}^{2} x_{13}^{2} x_{24}^{2} x_{34}^{2}}\right]^{\frac{K}{2}} \times \mathbb{O}^{2}(z, \bar{z})
$$

$$
K \rightarrow \infty
$$

- compute the octagon analytically by summing up the virtual particle contribution
\longrightarrow Fredholm determinant [Kostov, Petkova, D.S., 19]
- analysis of the Fredholm determinant in various regimes, including resurgent analysis
[Belitsky, Korchemsky, 19-21; Bajnok, Boldis, Korchemsky, 24]

Four point functions: the "simplest" correlator

$$
\mathbb{O}_{l}(z, \bar{z}, \alpha, \bar{\alpha})=1+\sum_{n=1}^{\infty} \mathcal{X}_{n}(z, \bar{z}, \alpha, \bar{\alpha}) \times \mathcal{I}_{n, l}(z, \bar{z})
$$

more general setting: octagon with a bridge of length l

$$
\mathcal{I}_{n, l}(z, \bar{z})=\frac{1}{n!} \sum_{a_{1}=1}^{\infty} \cdots \sum_{a_{n}=1}^{\infty} \int d u_{1} \cdots \int d u_{n} \prod_{j=1}^{n} \bar{\mu}_{a_{j}}\left(u_{j}, l, z, \bar{z}\right) \times \prod_{j<k}^{n} P_{a_{j} a_{k}}\left(u_{j}, u_{k}\right)
$$

one-particle measure: $\quad \bar{\mu}_{a}(u, l, z, \bar{z})=\frac{1}{\sqrt{z \bar{z}}} \frac{\sin a \phi}{\sin \phi} \times \mu_{a}(u) \times e^{-E_{a}(u) l} \times(z \bar{z})^{-i p_{a}(u)}$
two-particle interaction: $P_{a b}(u, v)=\mathcal{K}_{a b}^{++}(u, v) \mathcal{K}_{a b}^{+-}(u, v) \mathcal{K}_{a b}^{-+}(u, v) \mathcal{K}_{a b}^{--}(u, v)$

$$
\mathcal{K}_{a b}^{ \pm \pm}(u, v)=\frac{x^{[\pm a]}(u)-x^{[\pm b]}(v)}{1-x^{[\pm a]}(u) x^{[\pm b]}(v)} \quad x^{[\pm a]}+\frac{1}{x^{[\pm a]}}=\frac{u \pm i a / 2}{g}
$$

Exact results for the octagon

convenient parametrisation for the cross ratios: $\quad \begin{aligned} z & =e^{-\xi+i \phi}, \quad \bar{z}=e^{-\xi-i \phi}, \\ \alpha & =e^{\varphi-\xi+i \theta}, \quad \bar{\alpha}=e^{\varphi-\xi-i \theta} .\end{aligned}$

$$
\mathbb{O}_{\ell}(z, \bar{z}, \alpha, \bar{\alpha})=\frac{1}{2} \sum_{ \pm} \operatorname{Det}\left(\mathbf{I}-\lambda_{ \pm} \mathbf{K}_{\ell}^{\text {oct }}\right)
$$

[Kostov, Petkova, D.S., 19] simplified by [Belitsky, Korchemsky, 19]

$$
\left(\mathrm{K}_{\ell}^{\mathrm{oct}}\right)_{m n}=-2 \sqrt{(2 m+\ell+1)(2 n+\ell+1)} \int_{0}^{\infty} \frac{d t}{t} \chi(t) J_{2 m+\ell+1}(2 g t) J_{2 n+\ell+1}(2 g t)
$$

$$
m, n \geq 0
$$

$$
\chi(t)=\frac{\cos \phi-\cosh \xi}{\cos \phi-\cosh \sqrt{t^{2}+\xi^{2}}} \quad \text { Bessel kernel }
$$

- the octagon kernel is a rather universal object showing up in other instances, e.g.
- circular Wilson loop in N=4 SYM
- sphere partition function in $\mathrm{N}=2 \mathrm{Z} 2$ orbifold SYM
- two-and three-point function of twisted BPS operators in the above theory

$\mathbf{N}=\mathbf{2} \mathbf{Z 2}$ orbifold theory

- a version of $\mathrm{N}=4$ SYM where the sphere part is orbifolded by a Z2 twist $\quad \tau=\left(\begin{array}{cc}\mathbf{1}_{N_{c}} & 0 \\ 0 & -\mathbf{1}_{N_{c}}\end{array}\right)$
- the gauge group is $S U\left(N_{c}\right) \times S U\left(N_{c}\right)$ and the fields are $2 N_{c} \times 2 N_{c}$ matrices
- same field content as $\mathrm{N}=4 \mathrm{SYM}$, with definite action of the twist:

$$
A_{\mu}=\tau A_{\mu} \tau, \quad\{Z, \bar{Z}\}=\tau\{Z, \bar{Z}\} \tau, \quad\{X, Y, \bar{X}, \bar{Y}\}=-\tau\{X, Y, \bar{X}, \bar{Y}\} \tau
$$

- symmetry reduced from $\quad \mathrm{psu}(2,2 \mid 4) \rightarrow \mathrm{su}(2,2 \mid 2) \times \mathrm{su}(2)$
- expected to be integrable:
- Bethe Ansatz equations [Beisert, Roiban, 05];
- twisted magnons [Gadde, Rastelli, 10]
- results from localisation:
- sphere partition function \longrightarrow matrix model [Pestun 07,...,

Beccaria, Korchemsky, Tseytlin, 22]

- two point functions of twisted BPS ops [Beccaria, Billo, Galvagno, Hasan, Lerda, 20,...]
- three point functions of (twisted) BPS [Billo, Frau, Lerda, Pini, Vallarino, 22,...]

$\mathbf{N}=\mathbf{2} \mathbf{Z 2}$ orbifold theory

$$
\tau=\left(\begin{array}{cc}
\mathbf{1}_{N_{c}} & 0 \\
0 & -\mathbf{1}_{N_{c}}
\end{array}\right)
$$

- BPS (vacuum) sector

$$
\begin{array}{ll}
U_{k}(x)=\frac{1}{\sqrt{2}} \operatorname{Tr} Z^{k}(x)=\frac{1}{\sqrt{2}} \operatorname{Tr}\left(Z_{0}^{L}+Z_{1}^{L}\right) & \text { untwisted } \\
T_{k}(x)=\frac{1}{\sqrt{2}} \operatorname{Tr} \tau Z^{k}(x)=\frac{1}{\sqrt{2}} \operatorname{Tr}\left(Z_{0}^{L}-Z_{1}^{L}\right) & \text { twisted }
\end{array}
$$

$$
\Delta_{U_{k}}=\Delta_{T_{k}}=k
$$

- two-point functions (from localisation + perturbative checks [Galvagno, Preti, 20])

$$
\begin{aligned}
\left\langle U_{k}(x) \bar{U}_{k}(y)\right\rangle=\frac{G_{U_{k}}}{|x-y|^{2 k}} \\
\left\langle T_{k}(x) \bar{T}_{k}(y)\right\rangle=\frac{G_{T_{k}}}{|x-y|^{2 k}} \\
K_{\ell+1} \equiv \mathbf{K}_{\ell}^{\text {oct }} \quad \text { with } \quad \chi(t)=\frac{e^{t}}{\left(e^{t}-1\right)^{2}}
\end{aligned}
$$

$$
G_{T_{k}}=\mathcal{G}_{k} \frac{\operatorname{det}\left(1-K_{k+2}\right)}{\operatorname{det}\left(1-K_{k}\right)}
$$

$\mathbf{N}=\mathbf{2} \mathbf{Z 2}$ orbifold theory

- three-point functions (extremal) [Billo, Frau, Lerda, Pini, Vallarino, 22]

$$
p=k+\ell
$$

$$
\begin{gathered}
\left\langle U_{k}(x) T_{\ell}(y) \bar{T}_{p}(z)\right\rangle=\frac{G_{U_{k}, T_{\ell}, \bar{T}_{p}}}{|x-z|^{2 k}|y-z|^{2 \ell}} \\
C_{U_{k}, T_{\ell}, \bar{T}_{p}}=\frac{G_{U_{k}, T_{\ell}, \bar{T}_{p}}}{\sqrt{G_{U_{k}} G_{T_{\ell}} G_{T_{p}}}}=\frac{\sqrt{k \ell p}}{\sqrt{2} N} \sqrt{1+\frac{1}{2 \ell} g \partial_{g} \ln G_{T_{\ell}}} \sqrt{1+\frac{1}{2 p} g \partial_{g} \ln G_{T_{p}}} \\
\left\langle T_{k}(x) T_{\ell}(y) \bar{U}_{p}(z)\right\rangle=\frac{G_{T_{k}, T_{\ell}, \bar{U}_{p}}}{|x-z|^{2 k}|y-z|^{2 \ell}} \\
C_{T_{k}, T_{\ell}, \bar{U}_{p}}=\frac{G_{T_{k}, T_{\ell}, \bar{U}_{p}}}{\sqrt{G_{T_{k}} G_{T_{\ell}} G_{U_{p}}}}=\frac{\sqrt{k \ell p}}{\sqrt{2} N} \sqrt{1+\frac{1}{2 \ell} g \partial_{g} \ln G_{T_{\ell}}} \sqrt{1+\frac{1}{2 k} g \partial_{g} \ln G_{T_{k}}}
\end{gathered}
$$

$\sqrt{1+\frac{1}{2 \ell} g \partial_{g} \ln G_{T_{\ell}}}=\frac{\operatorname{det}\left(1-K_{\ell+1}\right)}{\sqrt{\operatorname{det}\left(1-K_{\ell}\right) \operatorname{det}\left(1-K_{\ell+2}\right)}}$
[Ferrando, Komatsu, Lefundes, D.S.; Korchemsky, 24] unpublished

$\mathbf{N}=\mathbf{2} \mathbf{Z 2}$ orbifold theory

- compute the three-point function using integrability \longrightarrow hexagon decomposition [Ferrando, Komatsu, Lefundes, D.S.]

octagon with two sides identified
$=$ insertion of a twist $\quad \tau \rightarrow \mathbf{1}_{L} \times \operatorname{diag}\left(\mathbf{1}_{F},-\mathbf{1}_{B}\right)_{R}$
breaks $\quad \operatorname{psu}(2 \mid 2)_{L} \times \operatorname{psu}(2 \mid 2)_{R} \rightarrow \operatorname{psu}(2 \mid 2)_{L} \times[\mathrm{su}(2) \times \mathrm{su}(2)]_{R}$

$$
\sqrt{1+\frac{1}{2 \ell} g \partial_{g} \ln G_{T_{\ell}}}=\frac{\operatorname{det}\left(1-K_{\ell+1}\right)}{\sqrt{\operatorname{det}\left(1-K_{\ell}\right) \operatorname{det}\left(1-K_{\ell+2}\right)}} \longleftarrow \quad \begin{aligned}
& \text { octagon contribution }
\end{aligned} K_{\ell+1} \equiv \mathbf{K}_{\ell}^{\text {oct }}
$$

$\mathbf{N}=\mathbf{2} \mathbf{Z 2}$ orbifold theory

- one-magnon wrapping: from contact terms of the two magnons in the two bridges

singularities in the hexagon weights
[Basso, Gonçalves, Komatsu, 17]

$$
\begin{aligned}
\frac{1}{(u-v-i \epsilon)(u-v+i \epsilon)} & \sim \frac{\pi}{\epsilon} \delta(u-v) \\
\epsilon & \rightarrow 0
\end{aligned}
$$

- contribution of the MATRIX part to the contact term

$\mathbf{N}=\mathbf{2} \mathbf{Z 2}$ orbifold theory

- one-magnon wrapping

$$
W_{1}=\sum_{a \geq 1} \int_{-\infty}^{\infty} \frac{d u}{2 \pi} e^{-\tilde{E}_{a}(u) \ell} \tilde{\mathcal{K}}_{a a}(u, u)
$$

$$
e^{-\widetilde{E}_{a}(u)}=\frac{1}{x^{[+a]} x^{[-a]}}
$$

$$
\widetilde{\mathcal{K}}_{a a}(u, u)=-\left.i \operatorname{STr}_{a \otimes b}\left\{\mathcal{S}_{b a}\left(v^{\gamma}, u^{\gamma}\right) \tau_{a} \partial_{u} \mathcal{S}_{a b}\left(u^{\gamma}, v^{\gamma}\right)\right\}\right|_{v \rightarrow u ; b \rightarrow a}
$$

Mathematica-suported conjecture for the functional dependence using Beisert's S matrix in the a th antisymmetric representation

$$
\frac{\operatorname{det}\left(1-K_{\ell+1}\right)}{\sqrt{\operatorname{det}\left(1-K_{\ell}\right) \operatorname{det}\left(1-K_{\ell+2}\right)}}=1-\operatorname{Tr} K_{\ell+1}+\frac{1}{2} \operatorname{Tr}\left(K_{\ell}+K_{\ell+2}\right)+\ldots \equiv 1+B_{1}+W_{1}+\ldots
$$

$\mathbf{N}=\mathbf{2} \mathbf{Z 2}$ orbifold theory

- two-magnon contributions?
- the regularisation procedure is more subtle \longrightarrow start with a four point function and perform an OPE limit [Basso, IGST 21; Basso, Georgoudis, Klemenchuk-Sueiro, 22]
- the combinatorics of diagrams is more involved, but we obtained the necessary building blocks
- draw inspiration from the fishnet case [Ferrando, Olivucci, unpublished]
- factorisation of the bridge and wrapping contributions

Summary and outlook

- Some correlation functions of local gauge invariant operators can be computed exactly in terms of Fredholm determinants, either by integrability techniques or by localisation
- The cases accessible by both are a good laboratory to study the interplay between the two approaches
- We can hope to develop a more systematic understanding of the structure constants via from the analysis of wrapping (TBA-like) corrections and the connection with the SoV methods [Bercini, Homrich, Vieira, 22 \& various groups, in progress]
- Five point functions have a richer structure, being associated to more complicated Feynman diagrams - but their analysis is more complicated [Fleury, Komatsu, 17; Fleury, Gonçalves $20 \&$ various groups, in progress]

