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Scattering theory in 2D

Integrability — Factorised S-matrices that satisfy:
= YBE

» Unitarity

Bootstrap

_ Sine-Gordon 2> s =% Sausage 2 s=1

Factorised scattering Doublet soliton-antisoliton Triplet of solitons

S-matrix prop. to R-matrix of spin Y2 x Y2 R-matrix of spin 1 x 1

Why not try higher spin s ¢




Sine-Gordon S-matrix

Theory with a bosonic lagrangian

However in its repulsive regime it is described by the scattering of solitons
(isospin 2) and antisolitons (isospin -'2) forming a doublet inirrep s = %

S-maitrix well known since Zam-Zam work (1979) to be factorized in two
body S-matrices proportional to the R-matrix of Ug(sly) in repr 2 x V2

So by construction it satisfies YBE
The deformation parameter g is related to the sG coupling

Overall scalar function Sy 8) left free by YBE can be determined by unitarity,
crossing and bootstrap

Could in principle have CDD factors not adding new poles.
We assume minimality: no additional CDD factors.



Inverse scatfering program

Although S-matrices are on-shell, they can provide also off-shell information on
the underlying QFT

= Correlation functions through the form factor program

= Thermodynamics of the system and finite size effects through TBA and/or
NLIE

» Fven describe non-equilibrium physics

®» One could think that the S-matrix is a way to define a QFT alternative to the
Lagrangian formulation

® |t is alongstanding question, since the 1960’s, if any S-matrix theory has an
underlying QFT description.




Hagedorn singularities & phase
fransitions

Is there a scale where the S-maitrix is not valid anymore?

For example, quarks replace hadrons at high temperature in QCD
Also in string theory similar phenomena: Hagedorn phase transitions

If S-maitrix fails fo describe the theory, TBA also fails (diverges) and this
signals a singularity that we call Hagedorn singularity

This behaviour has been shown in TTobar deformations of QFTs, but other
irelevant operators may play the same role

TTbar is usually related to adding CDD factors to the scalar prefactor of S-
matrices

We explore this situation in minimal S-matrices, where no additional CDD
factor appears



Factorised scattering of (iso-)spin s particles

Uy(sus) symmetry g2 — q=>2

Mg =

ql/2 — q-1/2

Ji,, I3 =3, [I4,,I_| =[23;5),

2 particle S-matrix:

S(A) =0 (P Z 179 P{ﬂ) o !
J=0

/1

gauge permutator g-Projectors

Case g =1 infroduced in Aladim, Martins 1994




g-Projectors
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Rapidity functions & prefactor
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More on prefactor

When s is infeger the prefactor greatly symplifies
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When s is half-integer it gives rise to the infinite T' product
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Examples

» s='%: Sine-Gordon

» s=]: Sausage

» 5=3/2:
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Thermodynamic Bethe Ansatz

» Bethe Yang equation
6iRmsinth-I-( j|{9}) .
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» String hypothesis
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1
we restrict to the simpler case v = N

Diagonalisation in ferms of Bethe Ansatz of XXZ higher spin chains [Kulish Reshetikhin]
®» Thermodynamic limit and intergal eqs. for densities of centers of strings ¢ and &
= Minimization of free energy and TBA
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TBA equations: free energy & scaling fct.

Pseudoenergies
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TBA graph: not a Dynkin diagram
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Finite size vacuum energy of the mirror theory Ey(T') = e

Dimensionless parameter 7 = m/T  measures the size

Scaling function
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Plateaux or not plateaux?
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Figure 3: The functions Ly(#) for spin s = 1/2 (left) and s = 1 (right) with v = 1/7, for different
values of r. One can see that for smaller values of r the plateau starts to form.




Behaviour for various s
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Figure 5: Left: the vacuum energy Fy(r) as it approaches the singular point 7* = 0.21628(2);
right: the kernel Ly(0) at different values of r. Both were obtained for s = 5/2 and N = 12.




Crifical temperature
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Figure 6: Value of the singular point r*, for different values of spin and coupling constant v = 1/N.
The values are computed with precision to the 6th decimal digit. The r*-axis is log-scaled.




Hagedorn transition ¢ PAOPI
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Conclusions

®» New S-matrices of isospin s, consistent with crossing symmetry, unitarity and
booftstrap (repulsive regime) with minimality condition on the CDD factors.

» Describe scattering of solitonic mulfiplets
®» |n the case s = 2 coincide with sG, for s = 1 with Sausage models

®» [Focus on thermodynamics, for s > 1 a Hagedorn singularity appears in the
free energy

» The TBA equations can be encoded on a diagram. This s a Dynkin diagram
fors =12, 1 but not for higher s.

» We suspect that it is not a coincidence that Hagedorn singularity appears
where the diagram is not Dynkin.

» Universality of the singular behaviour of free energy: exponent = 2
suggesting that the responsible field could be something related to TToar







