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Scattering theory in 2D

Integrability → Factorised S-matrices that satisfy:

´ YBE

´ Unitarity

´ Crossing symmetry

´ Bootstrap

Sine-Gordon à s = ½ Sausage à s = 1

Factorised scattering Doublet soliton-antisoliton Triplet of solitons

S-matrix prop. to R-matrix of spin ½ x ½ R-matrix of spin 1 x 1

Why not try higher spin s ?



Sine-Gordon S-matrix

´ Theory with a bosonic lagrangian
´ However in its repulsive regime it is described by the scattering of solitons

(isospin ½) and antisolitons (isospin -½) forming a doublet in irrep s = ½ 
´ S-matrix well known since Zam-Zam work (1979) to be factorized in two

body S-matrices proportional to the R-matrix of Uq(sl2) in repr ½ x ½
´ So by construction it satisfies YBE
´ The deformation parameter q is related to the sG coupling
´ Overall scalar function S0(⍬) left free by YBE can be determined by unitarity, 

crossing and bootstrap
´ Could in principle have CDD factors not adding new poles.
´ We assume minimality: no additional CDD factors.



Inverse scattering program

Although S-matrices are on-shell, they can provide also off-shell information on 
the underlying QFT

´ Correlation functions through the form factor program

´ Thermodynamics of the system and finite size effects through TBA and/or 
NLIE

´ Even describe non-equilibrium physics
´ One could think that the S-matrix is a way to define a QFT alternative to the 

Lagrangian formulation

´ It is a longstanding question, since the 1960’s, if any S-matrix theory has an 
underlying QFT description.



Hagedorn singularities & phase
transitions
Is there a scale where the S-matrix is not valid anymore?
´ For example, quarks replace hadrons at high temperature in QCD
´ Also in string theory similar phenomena: Hagedorn phase transitions
´ If S-matrix fails to describe the theory, TBA also fails (diverges) and this

signals a singularity that we call Hagedorn singularity
´ This behaviour has been shown in TTbar deformations of QFTs, but other

irrelevant operators may play the same role
´ TTbar is usually related to adding CDD factors to the scalar prefactor of S-

matrices
´ We explore this situation in minimal S-matrices, where no additional CDD 

factor appears



Factorised scattering of (iso-)spin s particles

symmetry

2 particle S-matrix:

Aladim, Martins 1994

which satisfies

2sX

J=0

P[J ] = I, and
�
P[J ]
�2

= P[J ]
. (2.5)

Their matrix elements are written in terms of the Clebsch-Gordan coe�cients

P[J ]m
0
1m

0
2

m1m2
=

JX

M=�J

hs,m0
1; s,m

0
2|J,MihJ,M |s,m1; s,m2i. (2.6)

The Yang-Baxter equation determines the scalar functions

f
[J ](✓) =

JY

k=1

i⇡k � ✓

i⇡k + ✓
(2.7)

up to an overall function which can be fixed by unitarity and crossing symmetry. This

S-matrix has been studied in [9].

We extend this “rational” S-matrix to the “trigonometric” one S by introducing certain

interactions in terms of a coupling constant which is related to a deformation parameter

q 2 C of the quantum group symmetry algebra Uq(su2), generated by J±, q±J3 such that

[J±, ,J3] = ±J± , [J+, ,J�] = [2J3] (2.8)

and with Casimir operator

Q = J+J� + [J3 � 1/2]q = J�J+ +


J3 +

1

2

�
(2.9)

where

[�] ⌘ q�/2 � q��/2

q1/2 � q�1/2
(2.10)

The asymptotic massive particles form a spin-s representation of Uq(su2).

This S-matrix can be expressed similarly as in section 2,

S(✓) = �

 
P

2sX

J=0

f
[J ]
q (✓)P[J ]

q

!
�
�1
, (2.11)

but now with some trigonometric scalar functions f
[J ]
q (✓), q-deformed projectors P[J ]

q of

Uq(su2), and some gauge transformation �. All these ingredients of the S-matrices will

be determined completely by imposing such constraints such as the Yang-Baxter equation,

unitarity, and crossing symmetries.
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gauge permutator q-Projectors

Case q = 1 introduced in



q-Projectors

´ q-Clebsch-Gordan

For a generic q, not a root of unity, the Lusztig-Rosso theorem states that the repre-

sentations of the Uq(su2) are in one to one correspondence to those of su2, and labelled by

integer or half-integer J [10]. The tensor products of two irreducible representations are de-

composed into a direct sum of other irreducible ones in the same way as the usual addition

of two angular momenta in su2. The coe�cients of this decomposition are now the quan-

tum Clebsch-Gordan coe�cients (qCGs), from which it is possible to construct the quantum

projectors:

P[J ]
q

m0
1m

0
2

m1m2
=

JX

M=�J

hs,m0
1; s,m

0
2|J,MiqhJ,M |s,m1; s,m2iq. (2.12)

Here, |J,Mi is an eigenvector of the Uq(su2) Casimir operator Q and of J3

Q|J,Mi =

s+

1

2

�

q

|J,Mi , J3|J,Mi = m|J,Mi (2.13)

We need explicit expressions of the qCGs to write down concrete S-matrices. They are given

by [8, 11, 12]

hs,m1; s,m2|J,Miq = f(J) · q(2s�J)(2s+J+1)/4+s(m2�m1)/2

⇥ {[s+m1]![s�m1]![s+m2]![s�m2]![J +M ]![J �M ]!}1/2
X

⌫�0

(�1)⌫
q�⌫(2s+J+1)/2

D⌫
,(2.14)

where

D⌫ = [⌫]![2s� J � ⌫]![s�m1 � ⌫]![s+m2 � ⌫]![J � s+m1 + ⌫]![J � s�m2 + ⌫]!,

f(J) =

⇢
[2J + 1]q([J ]!)2[2s� J ]!

[2s+ J + 1]!

�1/2

. (2.15)

Here we use a convention of the q-factorial for a positive integer n

[n]! =
nY

k=1

[k]q, [0]! = 1, [�n]! = 1. (2.16)

The summation over ⌫ is bounded above since D⌫ = 1 if any argument of q-factorials in

D⌫ is negative. From these expressions, one can compute the q-projectors straightforwardly.

Notice that there may be problems in this qCG expression when q is a n-th root of unity:

q = q(r, n) = e
2⇡ir/n with n 2 Z>0 and r = 1, ..., n � 1. Then for any integer k multiple

of n the corresponding quantum number [k] = 0. This fact would create diverging factors

in the expressions (2.14) and (2.15). To avoid them, one has to resort to the more general
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Rapidity functions & prefactor

Now we introduce a coupling constant � by

q = e
2⇡i�

. (2.23)

The scalar functions now can be expressed as

f
[J ]
q (✓) = S0(✓)

JY

k=1

sinh [�(ik⇡ � ✓)]

sinh [�(ik⇡ + ✓)]
, J = 0, 1, · · · , 2s. (2.24)

Next, we fix the overall scalar function S0(✓) following a standard procedure. By requiring

unitarity and crossing symmetry, this function should satisfy

S0(✓)S0(�✓) = 1, S0(i⇡ � ✓) =
2sY

k=1

sinh [�(i(k + 1)⇡ � ✓)]

sinh [�(ik⇡ + ✓)]
S0(✓). (2.25)

The standard procedure for fixing S0 is to express this as an infinite product of factors that

satisfy the crossing symmetry and unitarity alternatingly as follows:

S0(✓) =
2sY

k=1

"
sinh [�(i⇡k + ✓)]

sinh [�(i⇡k � ✓)]

 1Y

`=1

sinh [�(i⇡(k + `)� ✓)] sinh [�(i⇡(k � `)� ✓)]

sinh [�(i⇡(k + `) + ✓)] sinh [�(i⇡(k � `)k + ✓)]

!#
.(2.26)

When s is an integer, i.e. even 2s, this infinite product is very much simplified to

S0(✓) =
sY

m=1

sinh [�(✓ + i2m⇡)]

sinh [�(✓ � i2m⇡)]
. (2.27)

The S-matrix element Sss
ss describing scattering between As particles with J3 = s can be

read o↵ from (2.24) since only the projector P[2s] contributes:

Sss
ss(✓) =

sY

m=1

sinh [�(✓ � i(2m� 1)⇡)]

sinh [�(✓ + i(2m� 1)⇡)]
. (2.28)

This reproduces the S
++
++ element of the sausage model for s = 1.

For a half-integer s, i.e. odd 2s, one can convert the infinite products of trigonometric

functions into products of �-functions

S0(✓) =
2sY

m=1

(
1

i⇡
sinh [�(✓ + im⇡)]�


1� �(m� 1) +

i�✓

⇡

�
�


1� �m� i�✓

⇡

�
⇥

⇥
1Y

n=1

"
R

[s,m]
n (✓)R[s,m]

n (i⇡ � ✓)

R
[s,m]
n (0)R[s,m]

n (i⇡)

#)
(2.29)
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Unitarity:
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Crossing:
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More on prefactor
When s is integer the prefactor greatly symplifies
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When s is half-integer it gives rise to the infinite Γ product
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. (2.23)
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7In both cases the integral representation holds

R
[s,m]
n (✓) =

�
⇥
�(4sn� 4s+ 2m� 1)� i�✓

⇡

⇤
�
⇥
1 + �(4sn� 2m+ 1)� i�✓

⇡

⇤

�
⇥
�(4sn� 2s+ 2m� 1)� i�✓

⇡

⇤
�
⇥
1 + �(4sn� 2s� 2m+ 1)� i�✓

⇡

⇤ . (2.30)

Again, the S-matrix element between As particles becomes

Sss
ss(✓) =

2sY

m=1

(
1

i⇡
sinh [�(✓ � im⇡)]�


1� �(m� 1) +

i�✓

⇡

�
�


1� �m� i�✓

⇡

�
⇥

⇥ �[�m]

�[1� �(m� 1)]

1Y

n=1

"
R

[s,m]
n (✓)R[s,m]

n (i⇡ � ✓)

R
[s,m]
n (0)R[s,m]

n (i⇡)

#)
. (2.31)

Although (2.28) for an integer s and (2.31) for a half-integer s look very di↵erent, it turns

out that both have exactly the same integral representation

Sss
ss(✓) = exp

Z 1

�1

dk

k

sinh(⇡ks) sinh ⇡k(s� 1
2� )

sinh ⇡k
2� sinh ⇡k

e
ik✓ for all s. (2.32)

From this representation, one can notice that

Sss
ss(✓) = 1, when � =

1

2s
. (2.33)

This can be thought of as a kind of free point. For s = 1/2, this expression reduces to the

prefactor of the sine-Gordon S-matrix in [1].

In terms of this scalar factor, the S-matrix can be written as

S(✓) = Sss
ss(✓) · Smat(✓), Smat(✓) ⌘ �

 
P

2sX

J=0

"
2sY

k=J+1

sinh [�(ik⇡ + ✓)]

sinh [�(ik⇡ � ✓)]

#
P[J ]
q

!
�
�1
. (2.34)

We present explicit expressions for the next simplest s = 3/2 S-matrix which has 4

particles Am,m = 3/2, 1/2,�1/2,�3/2 with C(Am) = Am = A�m. Denoting these particles

with index 1, 2, 3, 4, hence, 1̄ = 4, 2̄ = 3, non-vanishing S-matrix elements are given by the

prefactor in (2.32) multiplied by the following matrix elements:

S11
11 = 1, S12

12 =
(0)

(3)
, S21

12 =
s3

(3)
, S13

13 =
(0)(�1)

(2)(3)
, S22

13 =
s2

p
s3/s1(0)

(2)(3)
,

S31
13 =

(s1s4 + 2s2)(0)

(2)(3)
, S22

22 =
f1

(2)(3)
, S14

14 =
(0)(�1)(�2)

(1)(2)(3)
, S23

14 =
s3(0)(�1)

(1)(2)(3)
,

S32
14 =

s2s3(0)

(1)(2)(3)
, S41

14 =
s1s2s3

(1)(2)(3)
, S23

23 =
(0)f1

(1)(2)(3)
, S32

23 =
s2f2

(1)(2)(3)
,

and those related by C,P,T transformations given in (2.22). We have used the short notation

(n) ⌘ 2 sinh [�(✓ � i⇡n)] , sn ⌘ 2 sinh(in⇡�),

f1 = 2 cosh [�(2✓ � i⇡)] +
s10

s5
� 2

s2

s1
, f2 = 2

s2

s1
cosh [�(2✓ � i⇡)] + s

2
2 � 2s21 � 4.
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Examples
´ s = ½ :     Sine-Gordon
´ s = 1 :      Sausage
´ s = 3/2 :
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⇥ �[�m]

�[1� �(m� 1)]

1Y

n=1

"
R

[s,m]
n (✓)R[s,m]

n (i⇡ � ✓)

R
[s,m]
n (0)R[s,m]

n (i⇡)

#)
. (2.31)

Although (2.28) for an integer s and (2.31) for a half-integer s look very di↵erent, it turns

out that both have exactly the same integral representation

Sss
ss(✓) = exp

Z 1

�1

dk

k

sinh(⇡ks) sinh ⇡k(s� 1
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Thermodynamic Bethe Ansatz
´ Bethe Yang equation

´ String hypothesis

we restrict to the simpler case 

´ Diagonalisation in terms of Bethe Ansatz of XXZ higher spin chains [Kulish Reshetikhin]

´ Thermodynamic limit and intergal eqs. for densities of centers of strings 𝜎 and $𝜎

´ Minimization of free energy and TBA

3 Thermodynamic Bethe ansatz

At a finite temperature, a large number of asymptotic particles can be created from the

heat bath, carrying all possible momenta and J3 quantum numbers. During elastic scat-

tering processes, these particles will reach a thermal equilibrium where the momenta are

distributed in such a way that the free energy of the system is minimized. This condition for

the equilibrium is the thermodynamic Bethe ansatz (TBA) equations. The main technical

di�culty arises from the fact that the S-matrix is nondiagonal. Many di↵erent “magnons”

can appear in diagonalizing transfer matrices. To simplify the analysis, we consider, in this

paper, 1/� to be integers only, i.e. we are at values of q corresponding to primitive roots

of unity. The more generic case should be approached by an adaptation of the Takahashi

Suzuki decomposition methods [13], on which we intend to return in future.

3.1 Bethe-Yang equation

If a numberN of on-shell particles are created at a finite temperature T , each of the momenta

carried by these particles should satisfy a periodic boundary condition, sometimes called the

Bethe-Yang equation. When the S-matrix is nondiagonal, this equation is given by a transfer

matrix T, formally equivalent to the “inhomogeneous” transfer matrix of an XXZ integrable

spin chain with higher spins [8]

e
iRm sinh ✓jT(✓j|{✓i}) = 1, (3.1)

T(✓j|{✓i})
m0

1,··· ,m0
N

m1,··· ,mN =
X

n1,··· ,nN

Sn2m0
1

n1m1
(✓1 � ✓j)S

n3m0
2

n2m2
(✓2 � ✓j) · · · S

n1m0
N

nNmN (✓N � ✓j). (3.2)

Here R is the volume of (infinite) one-dimensional space and we will take R ! 1 limit.

As shown in (2.34), the transfer matrix is factorized into a product of scalar functions

Sss
ss and the matrix part of Smat. The matrix part has been diagonalized by analytic Bethe

ansatz in [8] for the spin s XXZ chain and its generalization to the inhomogeneous case is

straightforward. The resulting Bethe-Yang equation is given by

e
iRm sinh ✓j

NY

k=1,k 6=j

Sss
ss(✓j � ✓k)

MY

`=1

e2s(✓j � �`) = 1, (3.3)

where we define, for short

en(✓) ⌘
sinh �(✓ + i⇡n/2)

sinh �(✓ � i⇡n/2)
, gn(✓) ⌘

cosh �(✓ + i⇡n/2)

cosh �(✓ � i⇡n/2)
. (3.4)
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The parameters (Bethe roots) �`, often called “magnonic rapidities” in this context, satisfy

the Bethe ansatz equations (BAEs)

NY

j=1

e2s(�` � ✓j) =
MY

k=1,k 6=`

e2(�` � �k). (3.5)

In the thermodynamic limit where we take R ! 1 and N , M ! 1, the magnons can

form a string of a length n where the n rapidities have the same real part but di↵erent

imaginary values as

�
(n)
j,↵ = �

(n)
j +

i⇡

2
(n+ 1� 2↵), ↵ = 1, 2, · · · , n, (3.6)

where the “center” of the string �
(n)
j is real. If the deformation parameter � is irrational,

there is no limit on the length n, hence we need to consider infinitely many di↵erent lengths

of strings. This makes the analysis of TBA equations very complicated.

For simplicity, we will restrict our consideration to

� =
1

N
, N 2 Z, N � 2s+ 1, (3.7)

which make the functions in (3.5) periodic in the imaginary direction with period ⇡N/2.

Following [13], two types of strings are allowed, defined as follows:

• Type I: �(n)
j,↵ as in (3.6) with n = 1, 2, · · · , N � 1

• Type II: �(N)
j = �j + i⇡N/2.

The M magnons can be reorganized into a Mn number of type I strings of length n =

1, 2, · · · , N � 1 and a MN number of type II strings. The formation of strings modifies the

Bethe-Yang equation (3.3), namely

e
iRm sinh ✓j

NY

k=1,k 6=j

S00(✓j � ✓k)
N�1Y

n=1

"MnY

`=1

S0n(✓j � �
(n)
` )

# MNY

k=1

S0N(✓j � �
(N)
k ) = 1, (3.8)

which can be obtained as

S00(✓) = Sss
ss(✓), (3.9)

S0n(✓) = Sn0(✓) =
nY

↵=1

e2s(✓ �
i⇡

2
(n+ 1� 2↵)) =

min(n,2s)Y

j=1

e|n�2s|+2j�1(✓), (3.10)
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In terms of these densities, we can rewrite the Bethe-Yang equations by taking logarithms

on both sides,

�n(✓) + �̃n(✓) = �n0m cosh ✓ � ⌫n

NX

m=0

Knm ? �n(✓), n = 0, 1, · · · , N, (3.20)

where we used a short notation

⌫n =

(
1, n = 0, N

�1, n = 1, · · · , N � 1
(3.21)

and a standard convolution notation (?)

f ? g(✓) =

Z 1

�1
f(✓0)g(✓ � ✓

0)d✓0, (3.22)

along with the kernels defined by

Knm(✓) =
1

2⇡i

d

d✓
lnSnm(✓). (3.23)

The densities �̃n are defined similarly as (3.19) for “unoccupied” states.

It is straightforward to derive the TBA equations from these Bethe-Yang equations by

following the standard procedure of minimizing the free energy. However, these “raw” TBA

equations are not ideal for analysis since the kernels Knm are quite complicated and any ✏n

is coupled with every other ones. We derive here, instead, “universal” TBA equations which

are expressed by a single universal kernel with a very simple structure of couplings. For

this purpose, it is necessary to find explicit expressions of these kernels and relations among

them. We present these derivations in appendix A.

The TBA equations can be derived in a standard procedure of minimizing the free energy

with the Bethe-Yang equations (A.27) as constraints. They are given by

✏n(✓) = �n,0mL cosh ✓ �
NX

m=0

Inm p ? log
�
1 + e

�✏m
�
(✓), n = 0, 1, · · · , N, (3.24)

where we have introduced the pseudo-energies

✏0(✓) = log
�̃0

�0
, ✏n(✓) = log

�n

�̃n
, n = 1, . . . , N � 1, ✏N(✓) = log

�̃N

�N
, (3.25)

and the universal kernel

p(✓) =
1

2⇡ cosh ✓
. (3.26)
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TBA equations: free energy & scaling fct.

Pseudoenergies
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Incidence matrix

1 2 2s� 1

0

2s 2s+ 1

N � 3
N � 2

N � 1

N

Figure 1: Dynkin-like structure of the TBA equations for 2s < N � 1. Note that the graph is a

proper Dynkin diagram only for 2s = 1 and 2s = 2.

1 2

N � 3

0
N � 2

N � 1

N

Figure 2: Structure of the TBA equations of 2s = N � 1.

Here Inm are the matrix elements of the incidence matrix2 of the graphs in figs. 1 and 2 when

2s < N � 1 and 2s = N � 1, respectively.

The TBA equations are coupled nonlinear integral equations for N + 1 pseudo-energies

✏n, n = 0, 1, . . . , N where the finite size L in the time direction corresponds to a temperature

L = 1/T .

At finite temperature T , the free energy per unit length is given by

f(T )

T
= �

Z 1

�1

m

2⇡
cosh ✓ ln

�
1 + e

�✏0(✓)
�
d✓. (3.27)

4 Numerical Analysis

The TBA is based on the idea that there are two equivalent ways to quantise the theory

along di↵erent channels. This allows to identify the free energy per unit length of equation

(3.27) with the Casimir energy of the mirror theory,

E0(T ) =
f(T )

T
. (4.1)

It is customary to parameterize the vacuum energy as E0(T ) = �ec(r)T⇡/6, by introducing

the so-called scaling function ec(r), with r = m/T being a dimensionless parameter. One

2
It is the matrix whose element m,n is 1 when the nodes n and m are connected, 0 otherwise.
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TBA graph: not a Dynkin diagram
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(3.27) with the Casimir energy of the mirror theory,

E0(T ) =
f(T )

T
. (4.1)

It is customary to parameterize the vacuum energy as E0(T ) = �ec(r)T⇡/6, by introducing

the so-called scaling function ec(r), with r = m/T being a dimensionless parameter. One

2
It is the matrix whose element m,n is 1 when the nodes n and m are connected, 0 otherwise.

13

Finite size vacuum energy of the mirror theory

1 2 2s� 1

0

2s 2s+ 1

N � 3
N � 2

N � 1

N

Figure 1: Dynkin-like structure of the TBA equations for 2s < N � 1. Note that the graph is a

proper Dynkin diagram only for 2s = 1 and 2s = 2.

1 2

N � 3

0
N � 2

N � 1

N

Figure 2: Structure of the TBA equations of 2s = N � 1.

Here Inm are the matrix elements of the incidence matrix2 of the graphs in figs. 1 and 2 when

2s < N � 1 and 2s = N � 1, respectively.

The TBA equations are coupled nonlinear integral equations for N + 1 pseudo-energies

✏n, n = 0, 1, . . . , N where the finite size L in the time direction corresponds to a temperature

L = 1/T .

At finite temperature T , the free energy per unit length is given by

f(T )

T
= �

Z 1

�1

m

2⇡
cosh ✓ ln

�
1 + e

�✏0(✓)
�
d✓. (3.27)

4 Numerical Analysis

The TBA is based on the idea that there are two equivalent ways to quantise the theory

along di↵erent channels. This allows to identify the free energy per unit length of equation

(3.27) with the Casimir energy of the mirror theory,

E0(T ) =
f(T )

T
. (4.1)

It is customary to parameterize the vacuum energy as E0(T ) = �ec(r)T⇡/6, by introducing

the so-called scaling function ec(r), with r = m/T being a dimensionless parameter. One

2
It is the matrix whose element m,n is 1 when the nodes n and m are connected, 0 otherwise.

13

1 2 2s� 1

0

2s 2s+ 1

N � 3
N � 2

N � 1

N

Figure 1: Dynkin-like structure of the TBA equations for 2s < N � 1. Note that the graph is a

proper Dynkin diagram only for 2s = 1 and 2s = 2.

1 2

N � 3

0
N � 2

N � 1

N

Figure 2: Structure of the TBA equations of 2s = N � 1.

Here Inm are the matrix elements of the incidence matrix2 of the graphs in figs. 1 and 2 when

2s < N � 1 and 2s = N � 1, respectively.

The TBA equations are coupled nonlinear integral equations for N + 1 pseudo-energies

✏n, n = 0, 1, . . . , N where the finite size L in the time direction corresponds to a temperature

L = 1/T .

At finite temperature T , the free energy per unit length is given by

f(T )

T
= �

Z 1

�1

m

2⇡
cosh ✓ ln

�
1 + e

�✏0(✓)
�
d✓. (3.27)

4 Numerical Analysis

The TBA is based on the idea that there are two equivalent ways to quantise the theory

along di↵erent channels. This allows to identify the free energy per unit length of equation

(3.27) with the Casimir energy of the mirror theory,

E0(T ) =
f(T )

T
. (4.1)

It is customary to parameterize the vacuum energy as E0(T ) = �ec(r)T⇡/6, by introducing

the so-called scaling function ec(r), with r = m/T being a dimensionless parameter. One

2
It is the matrix whose element m,n is 1 when the nodes n and m are connected, 0 otherwise.

13

Dimensionless parameter measures the size

Scaling function

-60 -40 -20 0 20 40 60

0

0.5

1

1.5

2

2.5

3

3.5

4

-60 -40 -20 0 20 40 60

0

1

2

3

4

5

6

7

8

9

10

Figure 3: The functions L0(✓) for spin s = 1/2 (left) and s = 1 (right) with � = 1/7, for di↵erent
values of r. One can see that for smaller values of r the plateau starts to form.

finds

ec(r) = 3

⇡2
m

Z 1

�1
r cosh(✓)L0(✓)d✓ (4.2)

where L0(✓) = log(1 + e
�✏0(✓)). In the limit r ! 0, the ultraviolet (UV) limit, this function

encodes all the relevant data of the underlying conformal field theory, since

lim
r!0

ec(r) = c� 24�min, (4.3)

where c is the central charge and �min is the lowest eigenvalue of the zero-th Virasoro

generator.

The TBA equations (3.24) are a system of non-linear integral equations for which is in

general very di�cult to find an analytical closed solution. Sometimes, however, it is possible

to do so. For example, in the UV limit r ! 0, it is well known that for some theories it is

possible to find an explicit expression for the central charge c in terms of Roger dilogarithms.

The fundamental property shared by these theories is the fact that as r approaches 0, the

functions log(1 + e
�✏(✓)), develop a plateau of width ⇠ 2 log(2/r), as first noticed by Al.

Zamolodchikov [15]. In the family of scattering theories we have introduced above, we have

two well-known examples of this behaviour: the Sine-Gordon model, corresponding to spin

s = 1/2, and the deformed O(3) �-model for s = 1. In these cases, the plateaus start to form

for small values of r, see e.g. fig. 3, and therefore one can explicitly compute the value of

the central charge using dilogarithms obtaining c = 1 and c = 2, respectively, independently

from the value of � = 1/N .

As pointed out above, it is usually di�cult to find a closed solution: for this reason, it
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Plateaux or not plateaux?
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Behaviour for various s

becomes very useful to perform a numerical analysis to study the behaviour of these theories.

The method that has proven to be more e↵ective is by solving the system of equations via

successive iterations. The idea is to start from the initial guess ✏(0)n = (r cosh ✓, 0, . . . , 0) for

n = 0, . . . , N and then define the k-th iterative solution, with k � 0, as

✏
(k+1)
n (✓) = �n,0r cosh(✓)�

NX

m=0

Inm(p ⇤ L(k)
m )(✓), n = 0, 1, . . . , N, (4.4)

where for simplicity we have set m = 1 and L
(k)
n (✓) = log(1+e

�✏
(k)
m (✓)). In general, this process

is not guaranteed to converge, but if it does, one is then able to find with arbitrarily high

accuracy the values of the pseudo-energies and the corresponding Ln(✓) (an extensive study

of this convergence problem has been done in [16]). This allows us to compute numerically

the integral (4.2) at di↵erent values of r, finding the value of the scaling function and,

possibly, of the central charge of the underlying conformal theory. The cases of s = 1/2 and

s = 1 are shown in fig. 4.
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Figure 4: Scaling functions for spin s = 1/2 (left) and s = 1 (right).

4.1 Higher spins and Hagedorn transition

Having a natural generalization of the S-matrix for higher values of the spin, s � 3
2 , and of

the corresponding TBA equations, it is natural to ask what kind of theories they describe.

Performing the same iterative procedure as above, we observe an unexpected behaviour as

the ground state energy E0(r) diverges at a positive finite value r⇤ and, correspondingly, that

the functions Ln(✓) do not develop a plateau, but rather become more peaked around ✓ = 0

as they approach the singular value, as shown in fig. 5. Extending the numerical analysis to
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Figure 5: Left: the vacuum energy E0(r) as it approaches the singular point r⇤ = 0.21628(2);
right: the kernel L0(✓) at di↵erent values of r. Both were obtained for s = 5/2 and N = 12.

di↵erent values of the spin and of the coupling constant, we see that the critical value r
⇤ is

a function of both s and N = 1/�. Some values of r⇤ are listed in table 1.

s = 3/2 s = 2 s = 5/2 s = 3

N = 4 0.06024(4) - - -

N = 5 0.01683(2) 0.22505(9) - -

N = 6 0.00722(5) 0.09996(5) 0.40380(3) -

N = 7 0.00392(8) 0.05976(6) 0.21628(2) 0.57301(7)

N = 8 0.00248(7) 0.04195(5) 0.14665(8) 0.34110(6)

N = 9 0.00174(9) 0.03255(2) 0.11269(7) 0.24773(3)

N = 10 0.00132(7) 0.02699(9) 0.09349(6) 0.19958(2)

N = 11 0.00106(6) 0.0234(5) 0.08157(4) 0.17123(0)

N = 12 0.00089(4) 0.02106(7) 0.07367(8) 0.15307(2)

Table 1: Some values of the critical scale r⇤ for di↵erent values of s and � = 1/N .

Moreover, as can be seen from fig. 6, as N ! 1, � ! 0, the critical point seems to reach

a non-zero constant value. It is interesting to notice that also in N = 4 SYM, in the limit

where the coupling constant vanishes, there is a Hagedorn transition at finite temperature,

as shown by [18].

A similar behaviour has been recently studied in TT -deformed theories [17], which are

obtained as the irrelevant deformation of some integrable field theories. Here, the vacuum

energy develops a square root singularity

E0(r) ⇠r!r⇤ c0 + c1/2

p
r � r⇤. (4.5)

16



Critical temperature
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Figure 6: Value of the singular point r⇤, for di↵erent values of spin and coupling constant � = 1/N .

The values are computed with precision to the 6th decimal digit. The r⇤-axis is log-scaled.

In this setting, the singularity ultimately appears as a consequence of the presence of a

CDD factor and it has been regarded as the appearance of a Hagedorn-type phase transition.

Remarkably, it has been shown that by finely tuning the parameters of the deformation, one

can ultimately remove the singularity, as described in [7].

The theories we have introduced in this work present some similar aspects, but they are

crucially di↵erent. Indeed, the S-matrices we consider are not obtained as a deformation

of some known theory but are genuinely obtained by imposing the defining properties of a

scattering theory in 2 dimensions, as explained in section 2. As a result, the singularities

are in a sense more “fundamental”, as they cannot be removed by a fine-tuning of the

parameters.

We analysed the behaviour of these models close to the singularity, for di↵erent values of

the spin, at di↵erent values of the coupling constant. More explicitly, we have generated 100

points in a close neighbourhood of width ⇠ 1% of the singular points of table 1. We then

used these data and fitted the curves, as shown in fig. 7 with a fitting function given by

b(r � r
⇤)a + c0. (4.6)

The resulting value of the parameters a, b and c0 for di↵erent values of the spin and
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coupling constant � = 1/N are shown in figs. 8 and 9, respectively.
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Figure 8: Value of the exponent a for di↵erent values of N , extracted from the fitting procedure.

In particular, we see that the behaviour of the free energy E0(r) in a close neighbourhood

of the singular point r⇤(s,N) is compatible with the one of a square root, in analogy with

the TT case.

This, although, needs a more careful analysis as it is extremely di�cult and computation-

ally challenging to study the data in the close vicinity of the singularity r
⇤. In particular,

one needs to find clever ways to solve the TBA equations (3.24) analytically to have a more
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In particular, we see that the behaviour of the free energy E0(r) in a close neighbourhood

of the singular point r⇤(s,N) is compatible with the one of a square root, in analogy with
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Conclusions

´ New S-matrices of isospin s, consistent with crossing symmetry, unitarity and 
bootstrap (repulsive regime) with minimality condition on the CDD factors.

´ Describe scattering of solitonic multiplets

´ In the case s = ½ coincide with sG, for s = 1 with Sausage models

´ Focus on thermodynamics, for s > 1 a Hagedorn singularity appears in the 
free energy

´ The TBA equations can be encoded on a diagram. This s a Dynkin diagram
for s = ½ , 1 but not for higher s.

´ We suspect that it is not a coincidence that Hagedorn singularity appears
where the diagram is not Dynkin.

´ Universality of the singular behaviour of free energy: exponent = ½ 
suggesting that the responsible field could be something related to TTbar
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