Modular covariant torus partition functions

 of dense $A_{1}^{(1)}$ and dilute $A_{2}^{(2)}$ loop modelsMATRIX, Creswick, 11 July 2024

Alexi Morin-Duchesne, Andreas Klümper, Paul A. Pearce

- A.Morin-Duchesne, A.Klümper, PAP, Modular covariant torus partition functions of dense $A_{1}^{(1)}$ and dilute $A_{2}^{(2)}$ loop models, to be submitted, ≈ 30 p (2024).
- A.Morin-Duchesne, A.Klümper, PAP, Critical site percolation on the triangular lattice: From integrability to conformal partition functions, J.Stat.Mech. (2023) 043103, 105p: sl(3)
- A.Morin-Duchesne, A.Klümper, PAP, Conformal partition functions of critical percolation from D_{3} TBA equations, J.Stat.Mech. (2017) 083101, 85p (Critical bond percolation on the square lattice): sl(2)
- A.Morin-Duchesne, PAP, Fusion hierarchies, T-systems and Y-systems for the dilute $A_{2}^{(2)}$ loop models, J.Stat. Mech. (2019) 094007, 35p.
- A.Morin-Duchesne, A.Klümper, PAP, Groundstate finite-size corrections and dilogarithm identities for the twisted $A_{1}^{(1)}, A_{2}^{(1)}$ and $A_{2}^{(2)}$ models, J.Stat.Mech. (2021) 033105, 95p.

"Coulomb Line"

- In the continuum scaling limit, the modular invariant conformal partition functions of many critical 2d lattice models (RSOS, loop, vertex) can be expressed [FSZ87] in terms of the partition functions of the 2d Coulomb gas with logarithmic interactions.
- In their simplest regimes, the critical manifolds of the 6-vertex and 19-Vertex Izergin-Korepin models (respectively the isospectral $A_{1}^{(1)}$ and $A_{2}^{(2)}$ loop models) are curves in the thermodynamic space parametrized by the crossing parameter $\frac{\lambda}{\pi} \in(0,1)$. The models are Yang-Baxter integrable along these lines.
- The transfer matrix eigenenergies cross at the rational points $\frac{\lambda}{\pi} \in \mathbb{Q}$. At each such point, $\frac{\lambda}{\pi}=\frac{p^{\prime}-p}{p^{\prime}} \in \mathbb{Q}$ in this dense set, there exists an extended loop algebra symmetry [DFM2001] reflected by degeneracies in the eigenenergies.
- For generic values of the crossing parameter $\frac{\lambda}{\pi} \in(0,1)$ and twist $\gamma \in \mathbb{R}$, the partition functions are given as (infinite) sesquilinear forms in generic Verma characters.
- We will see that for zero twist $(\gamma=0)$ and $\frac{\lambda}{\pi} \in \mathbb{Q}$, the modular covariant torus partition functions can be written in terms of a generalized Coulomb partition function and also as sesquilinear forms in affine $u(1)$ characters.
- In this talk, it is convenient to work in the language of loop models but the results apply equally to both loop and the associated (isospectral) 6- and 19-vertex (Izergin-Korepin) models. Here I focus on results and omit most calculations.

Dense and Dilute Loop Models

- The face operators of the dense $A_{1}^{(1)}$ and dilute $A_{2}^{(2)}$ loop models take the form

$$
\begin{aligned}
\boxed{u}= & \rho_{1}(u) \square+\rho_{2}(u) \square+\rho_{3}(u) \square+\rho_{4}(u) \square+\rho_{5}(u) \square \square \\
& +\rho_{6}(u) \square+\rho_{7}(u) \square \square
\end{aligned}
$$

- Set $s(u)=\frac{\sin u}{\sin \lambda}$. In the simplest regimes $0<u<\lambda<\pi$. In terms of the spectral parameter u and crossing parameter λ, the tile weights $\rho_{i}=\rho_{i}(u)$, corresponding to critical manifolds, are

$$
\begin{array}{lll}
\text { dense: } & \rho_{1}=\rho_{2}=\cdots=\rho_{7}=0, & \rho_{8}=s(\lambda-u), \\
\text { dilute: } & \begin{cases}\rho_{1}=s(2 \lambda) s(3 \lambda)+s(u) s(3 \lambda-u), & \rho_{6}=\rho_{7}=s(u) s(3 \lambda-u) \\
\rho_{2}=\rho_{3}=s(2 \lambda) s(3 \lambda-u), & \rho_{8}=s(2 \lambda-u) s(3 \lambda-u) \\
\rho_{4}=\rho_{5}=s(2 \lambda) s(u), & \rho_{9}=-s(u) s(\lambda-u)\end{cases}
\end{array}
$$

- The fugacities of non-contractible and contractible (closed) loops on the torus are

$$
\alpha=\omega+\omega^{-1}, \quad \omega=e^{i \gamma}, \quad \gamma=\text { twist } ; \quad \beta=\left\{\begin{aligned}
2 \cos \lambda, & \text { dense } \\
-2 \cos 4 \lambda, & \text { dilute }
\end{aligned}\right.
$$

- Let $n_{\beta}(\sigma), n_{\alpha}(\sigma), n_{i}(\sigma)$ count contractible, non-contractible loops and the occurences of the i-th tile in σ. The lattice partition functions are then defined as a sum over configurations σ

$$
Z=\sum_{\sigma} \alpha^{n_{\alpha}(\sigma)} \beta^{n_{\beta}(\sigma)} \prod_{i=1}^{9} \rho_{i}^{n_{i}(\sigma)}
$$

Typical Loop Configurations

- Typical configurations of dense (left) and dilute (right) loop models. Upper panels show typical configurations on the torus. Lower panels show projections onto a doubly periodic rectangle.

Periodic and Anti-Periodic Boundary Conditions

$$
(h, v)=(0,0)
$$

$$
(h, v)=(0,1)
$$

$$
(h, v)=(1,0)
$$

$$
(h, v)=(1,1)
$$

- Sample loop configurations for the dilute $A_{2}^{(2)}$ loop model with combinations of periodic ($h, v=0$) and anti-periodic ($h, v=1$) boundary conditions horizontally and vertically on an $N \times M$ lattice. The left/right edges and top/bottom edges are identified to form a torus. Loop configurations for the dense $A_{1}^{(1)}$ loop model are similar but with each square face containing two loop segments. In this case h, v are simply the \mathbb{Z}_{2} parities of N and M.

Transfer Matrices and TL Algebras

- The dense and dilute loop models are integrable since their face operators satisfy the YangBaxter equation. The commuting transfer matrices $\boldsymbol{T}(u)$ of the dense and dilute loop models

are elements of the periodic dense/dilute Temperley-Lieb algebras
- Standard Modules: The periodic loop transfer matrices act diagrammatically on the vector spaces $\mathrm{W}_{N, d, \omega}$ spanned by planar link states on N nodes with d defects $(0 \leq d \leq N)$. Examples:

- Examples of the (defect preserving) action of the periodic TL algebra on the cylinder are:

Torus Lattice Partition Functions

- Set $\alpha=\omega+\omega^{-1}$ and let $W_{N, d, \omega}$ denote the standard module over the periodic dense/dilute Temperley-Lieb algebras where d is the number of defects. In both dense/dilute cases, the (matrix) trace over standard modules of the M-th power of the transfer matrix decomposes as a Laurent series

$$
\operatorname{tr}_{\mathrm{w}_{N, d, \omega}} \boldsymbol{T}(u)^{M}=\sum_{j=-M}^{M} \omega^{-j} C_{d, j}, \quad C_{d, j}=\frac{1}{2 \pi} \int_{0}^{2 \pi} d \gamma e^{i \gamma j} \operatorname{tr}_{\mathrm{W}_{N, d, e^{\gamma}}} \widehat{\boldsymbol{T}}(u)^{M}
$$

where $C_{d, j}$ are independent of $\omega=e^{i \gamma}$.

- The Markov trace glues the top and bottom edges of the cylinder together to form a torus.
- Using the Markov trace, it follows that the torus lattice partition functions are

$$
\begin{array}{ll}
Z_{\text {dense }}^{(h, v)} & =\sum_{\substack{-N \leq d \leq N \\
d \equiv h \bmod 2}} \sum_{\substack{-M \leq j \leq M \\
j \equiv v \bmod 2}} T_{d \wedge j}\left(\frac{\alpha}{2}\right) C_{d, j} \\
Z_{\text {dilute }}^{(h, v)}=\sum_{\substack{-N \leq d \leq N \\
d \equiv h \bmod 2}} 2 T_{d \wedge j}\left(\frac{\alpha}{2}\right) C_{d, j} \\
j \equiv v \leq j \leq M \\
j \equiv \bmod 2
\end{array}
$$

where $d \wedge j=\operatorname{gcd}(d, j), C_{-d, j}=C_{d,-j}$ and $T_{n}(x)$ is the n-th Chebyshev polynomial of the first kind $T_{n}(\cos \theta)=\cos n \theta$. Note that there is an extra factor of 2 for the dilute loop model.

Continuum Scaling Limit

- In the continuum scaling limit ($R^{\prime}=a N, R=a M ; a \rightarrow 0 ; M, N \rightarrow \infty$), the dense and dilute loop models are described by CFTs with effective central charges depending on the twist γ.
- Consider the untwisted models $(\gamma=0, \alpha=2)$. If λ / π is irrational then the CFT is irrational in the sense that its central charge is irrational. In this case, the models exhibit generic Virasoro symmetry. Otherwise, if λ / π is rational, then the CFT has a rational central charge and is both nonunitary and logarithmic but not rational. In these cases, higher degeneracies occur in the spectra and an affine $u(1)$ symmetry emerges.
- For λ / π rational, we parametrize the crossing parameter by

$$
\lambda=\left\{\begin{array}{ll}
\frac{\pi\left(p^{\prime}-p\right)}{p^{\prime}}, & \text { dense } \\
\frac{\pi\left(2 p^{\prime}-p\right)}{4 p^{\prime}}, & \text { dilute }
\end{array} \Rightarrow \beta=2 \cos \frac{\pi\left(p^{\prime}-p\right)}{p^{\prime}}, \quad 0<p<p^{\prime} \quad\left(p, p^{\prime} \text { coprime }\right)\right.
$$

- For $\gamma=0$, the central charge c, conformal weights $\Delta_{r, s}$ and affine $u(1)$ characters are then

$$
\begin{gathered}
c=1-\frac{6\left(p-p^{\prime}\right)^{2}}{p p^{\prime}}, \quad \Delta_{r, s}=\Delta_{r, s}^{p, p^{\prime}}=\frac{\left(p^{\prime} r-p s\right)^{2}-\left(p-p^{\prime}\right)^{2}}{4 p p^{\prime}} \\
\varkappa_{j}^{n}(q)=\varkappa_{j}^{n}(1, q), \quad \varkappa_{j}^{n}(z, q)=\frac{\Theta_{j, n}(q, z)}{q^{1 / 24}(q)_{\infty}}=\frac{q^{-1 / 24}}{(q)_{\infty}} \sum_{k \in \mathbb{Z}} z^{k} q^{(j+2 k n)^{2} / 4 n}, \quad(q)_{\infty}=\prod_{n=1}^{\infty}\left(1-q^{n}\right)
\end{gathered}
$$

at level $n=p p^{\prime}$ with associated conformal weights

$$
\Delta_{j}^{n}=\min \left[\frac{j^{2}}{4 n}, \frac{(2 n-j)^{2}}{4 n}\right], \quad j=0,1, \ldots, 2 n
$$

- For $\left(p, p^{\prime}\right)=(2,3)$ or $\lambda=\pi / 3$, the dense case is critical bond percolation on the square lattice and the dilute case is critical site percolation on the triangular lattice. For $\left(p, p^{\prime}\right)=(1,2)$ or $\lambda=\pi / 2$, these are models of critical dense and dilute polymers on the square lattice.

Scaling Limit of Torus Partition Functions

- Conjecture: The scaling limit of the standard module traces are conjectured to be

$$
\lim _{\substack{M, N \rightarrow \infty \\ M / N \rightarrow \delta \\ M \equiv \epsilon \bmod 2}} e^{M N f_{\mathrm{bulk}}(u)} \operatorname{tr}_{\mathrm{W}_{N, d, \omega}} \boldsymbol{T}(u)^{M}= \begin{cases}\frac{(q \bar{q})^{-c / 24}}{(q)_{\infty}(\bar{q})_{\infty}} \sum_{\ell=-\infty}^{\infty}(-1)^{\epsilon \ell} q^{\Delta_{\gamma / \pi-\ell, d / 2}^{p, p^{\prime}} \bar{q}^{p, p^{\prime}}}{ }^{p / \pi-\ell,-d / 2}, \text { dense } \\ \frac{(q \bar{q})^{-c / 24}}{(q)_{\infty}(\bar{q})_{\infty}} \sum_{\ell=-\infty}^{\infty} q^{\Delta_{\gamma / \pi-2 \ell, d / 2}^{p, p^{\prime}} \bar{q}^{\Delta_{\gamma / \pi-2 \ell,-d / 2}^{p, p^{\prime}}},} \text { dilute}\end{cases}
$$

where $f_{\text {bulk }}(u)$ is a known bulk free energy, q is the modular nome, δ is the aspect ratio and

$$
(q)_{\infty}=\prod_{n=1}^{\infty}\left(1-q^{n}\right), \quad \omega=e^{i \gamma}, \quad q=e^{2 \pi i \tau}= \begin{cases}\exp \left(-2 \pi i \delta e^{-i \frac{\pi u}{\lambda}}\right), & \text { dense } \\ \exp \left(-2 \pi i \delta e^{-i \frac{\pi u}{3 \lambda}}\right), & \text { dilute }\end{cases}
$$

- These (infinite) sesquilinear Verma forms are periodic functions in γ with period 2π.

Taking the scaling limit, we define scaled coefficients and partition functions by

$$
\mathcal{C}_{d, j}=\lim _{\substack{M, N \rightarrow \infty \\ M / N \rightarrow \delta}} e^{M N f_{\text {bulk }}(u)} C_{d, j}, \quad \mathcal{Z}^{(h, v)}=\lim _{\substack{M, N \rightarrow \infty \\ M / N \rightarrow \delta}} e^{M N f_{\text {bulk }}(u)} Z^{(h, v)}
$$

- For both dense and dilute cases, we find (treating $g=\frac{p}{4 p^{\prime}}$ as a continuous variable)

$$
\begin{gathered}
\mathcal{C}_{d, j}=\mathcal{Z}_{d, j}\left(\frac{p}{4 p^{\prime}}\right), \quad \mathcal{Z}_{m, m^{\prime}}(g)=\left(\frac{g}{\tau_{i}}\right)^{1 / 2} \frac{1}{\eta(q) \eta(\bar{q})} \exp \left[-\frac{\pi g}{\tau_{i}}\left|m \tau-m^{\prime}\right|^{2}\right] \\
\mathcal{Z}^{(h, v)}=\mathcal{Z}_{\text {dense }}^{(h, v)}=\mathcal{Z}_{\text {dilute }}^{(h, v)}=\sum_{d \in 2 \mathbb{Z}+h} \sum_{j \in 2 \mathbb{Z}+v} 2 T_{d \wedge j}\left(\frac{\alpha}{2}\right) \mathcal{Z}_{d, j}\left(\frac{p}{4 p^{\prime}}\right)
\end{gathered}
$$

where $\eta(q)=q^{1 / 24}(q)_{\infty}$ is the Dedekind eta function, $\tau_{i}=\operatorname{Im} \tau$ and the functions $\mathcal{Z}_{m, m^{\prime}}(g)$ are well-known in the Coulomb gas formalism [FSZ87].

Modular Covariance

- Under the action of the modular group with generators $T: \tau \mapsto \tau+1$ and $S: \tau \mapsto-\frac{1}{\tau}$, we find

$$
\mathcal{Z}_{d, j}(g, \tau+1)=\mathcal{Z}_{d, j-d}(g, \tau), \quad \mathcal{Z}_{d, j}\left(g,-\frac{1}{\tau}\right)=\mathcal{Z}_{j,-d}(g, \tau), \quad q=e^{2 \pi i \tau}
$$

so the partition functions satisfy

$$
\begin{array}{ll}
\mathcal{Z}^{(0,0)}(\tau+1)=\mathcal{Z}_{\text {tor }}^{(0,0)}(\tau), & \mathcal{Z}^{(0,0)}\left(-\frac{1}{\tau}\right)=\mathcal{Z}^{(0,0)}(\tau) \\
\mathcal{Z}^{(0,1)}(\tau+1)=\mathcal{Z}_{\text {tor }}^{(0,1)}(\tau), & \mathcal{Z}^{(0,1)}\left(-\frac{1}{\tau}\right)=\mathcal{Z}^{(1,0)}(\tau) \\
\mathcal{Z}^{(1,0)}(\tau+1)=\mathcal{Z}_{\text {tor }}^{(1,1)}(\tau), & \mathcal{Z}^{(1,0)}\left(-\frac{1}{\tau}\right)=\mathcal{Z}^{(0,1)}(\tau) \\
\mathcal{Z}^{(1,1)}(\tau+1)=\mathcal{Z}_{\text {tor }}^{(1,0)}(\tau), & \mathcal{Z}^{(1,1)}\left(-\frac{1}{\tau}\right)=\mathcal{Z}^{(1,1)}(\tau) \\
\hline
\end{array}
$$

- The fully periodic partition function $\mathcal{Z}^{(0,0)}$ is modular invariant whereas $\mathcal{Z}^{(0,1)}, \mathcal{Z}^{(1,0)}$ and $\mathcal{Z}^{(1,1)}$ are covariant under the modular group. Specifically, the action of the generators S and T on the ordered basis $\left\{\mathcal{Z}^{(0,0)}, \mathcal{Z}^{(0,1)}, \mathcal{Z}^{(1,0)}, \mathcal{Z}^{(1,1)}\right\}$ yields a four-dimensional representation of the modular group

$$
\mathrm{S}=\left(\begin{array}{llll}
1 & 0 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 0 & 1
\end{array}\right), \quad \mathrm{T}=\left(\begin{array}{llll}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 0 & 1 \\
0 & 0 & 1 & 0
\end{array}\right), \quad \mathrm{S}^{2}=(\mathrm{ST})^{3}=I
$$

Under this action, T satisfies $\mathrm{T}^{2}=I$ so here T is also an involution.

Sesquilinear Verma Forms

- The covariant partition functions should be expressible as sesquilinear forms in CFT characters. For $\frac{\lambda}{\pi}=\frac{p^{\prime}-p}{p^{\prime}} \in(0,1)$, we find the sesquilinear form in generic Verma characters $\frac{q^{-c / 24}}{(q)_{\infty}} q^{\Delta_{r, s}^{p, p^{\prime}}}$

$$
\begin{gathered}
\mathcal{Z}^{(h, v)}=\frac{(q \bar{q})^{-c / 24}}{(q)_{\infty}(\bar{q})_{\infty}}\left[\delta_{h=0 \bmod 2} \sum_{\ell=-\infty}^{\infty}(q \bar{q})^{\Delta_{\frac{\gamma}{\pi}-2 \ell, 0}^{p, p^{\prime}}}+\sum_{d \in \mathbb{Z} \backslash\{0\}} \delta_{d=h \bmod 2} \sum_{m=0}^{2 d-1} \Gamma_{m, d}^{(v)} \sum_{\ell=-\infty}^{\infty} q \Delta^{\Delta^{p, p^{\prime}}} \frac{m^{\prime}-2 \ell, \frac{d}{2}}{q} \frac{\Delta^{p, p^{\prime}}}{\frac{m}{d}-2 \ell,-\frac{d}{2}}\right] \\
\Gamma_{m, d}^{(v)}=\frac{1}{|2 d|} \sum_{j=0}^{2 d-1} e^{i \pi j m / d}\left[1+(-1)^{j+v}\right] T_{d \wedge j}\left(\frac{\alpha}{2}\right)
\end{gathered}
$$

This holds for general α. Summing over $h, v=0,1$ for the full partition function, this agrees with an equivalent but different expression in [FSZ87]. Proving this requires some number theory (Möbius/Euler totient functions, Möbius inversion formula)!

- For $\alpha=2$ (zero twist) and λ / π rational, these conformal partition functions simplify to

$$
\begin{aligned}
\left.\mathcal{Z}^{(h, v)}\right|_{\alpha=2} & =\frac{(q \bar{q})^{-c / 24}}{(q)_{\infty}(\bar{q})_{\infty}} \sum_{\ell \in \mathbb{Z}} \sum_{d \in 2 \mathbb{Z}+h}(-1)^{v \ell} q^{\Delta_{-\ell, d / 2}^{p, p^{\prime}} \bar{q}^{\Delta_{-\ell,-d / 2}^{p, p^{\prime}}}} \\
& =\frac{(q \bar{q})^{-c / 24}}{(q)_{\infty}(\bar{q})_{\infty}} \sum_{r, s \in \mathbb{Z}}(-1)^{v r} q^{\Delta_{r, s+h / 2}^{p, p^{\prime}} \bar{q}^{\Delta_{r,-s-h / 2}^{p, p^{\prime}}}} \\
& =\frac{1}{\eta(q) \eta(\bar{q})} \sum_{r, s-h / 2 \in \mathbb{Z}}(-1)^{v r} q^{\frac{\left(p^{\prime} r-p s\right)^{2}}{4 p p^{\prime}}} \bar{q}^{\frac{\left(p^{\prime} r+p s\right)^{2}}{4 p p^{\prime}}}=\mathcal{Z}^{(h, v)}\left(\frac{p}{p^{\prime}}\right)
\end{aligned}
$$

$$
\mathcal{Z}^{(h, v)}(g)=\frac{1}{\eta(q) \eta(\bar{q})} \sum_{r, s-h / 2 \in \mathbb{Z}}(-1)^{v r} q^{(r / \sqrt{g}-s \sqrt{g})^{2} / 4} \bar{q}^{(r / \sqrt{g}+s \sqrt{g})^{2} / 4}, \quad h, v=0,1
$$

and so involve a generalization of the usual Coulomb partition function $\mathcal{Z}(g)=\mathcal{Z}^{(0,0)}(g)$.

Affine $u(1)$ Sesquilinear Forms

- Let's now specialize to $\alpha=2$ (zero twist). By shifting r by p and using symmetries, we can write

$$
\mathcal{Z}^{(h, v)}\left(\frac{p}{p^{\prime}}\right)=\frac{1}{2 \eta(q) \eta(\bar{q})} \sum_{r, s-\frac{h}{2} \in \mathbb{Z}}(-1)^{v r} q^{\frac{\left(p^{\prime} r-p s\right)^{2}}{4 p p^{\prime}}}\left[\bar{q} \frac{\left(p^{\prime} r+p s\right)^{2}}{4 p p^{\prime}}+(-1)^{p v} \bar{q}^{\frac{\left(p^{\prime} r+p s+2 n\right)^{2}}{4 p p^{\prime}}}\right]=\sum_{r=0}^{p-1} \sum_{s=0}^{2 p^{\prime}-1}(-1)^{v r} \mathcal{Z}_{r, s}^{(h, v)}
$$

where we prove the large set of identities (valid for all $h, v, r, s, p, p^{\prime}$)

$$
\left.\left.\begin{array}{rl}
\mathcal{Z}_{r, s}^{(h, v)}:=\frac{1}{\eta(q) \eta(\bar{q})} & \sum_{r^{\prime} \in 2 p \mathbb{Z}+r} \sum_{s^{\prime} \in 2 p^{\prime} \mathbb{Z}+s+h / 2} q^{\frac{\left(p^{\prime} r^{\prime}-p s^{\prime}\right)^{2}}{4 p p^{\prime}}}\left[\bar{q} \frac{\left(p^{\prime} r^{\prime}+p s^{\prime}\right)^{2}}{4 p p^{\prime}}\right.
\end{array}+(-1)^{p v} \bar{q}^{\frac{\left(p^{\prime} r^{\prime}+p s^{\prime}+2 n\right)^{2}}{4 p p^{\prime}}}\right]\right)
$$

- It follows that the torus partition functions are sesquilinear forms in affine $u(1)$ characters

$$
\mathcal{Z}^{(h, v)}\left(\frac{p}{p^{\prime}}\right)=\sum_{r=0}^{p-1} \sum_{s=0}^{2 p^{\prime}-1}(-1)^{v r} \varkappa_{p^{\prime} r-p\left(s+\frac{h}{2}\right)}^{n}\left((-1)^{p v}, q\right) \varkappa_{p^{\prime} r+p\left(s+\frac{h}{2}\right)}^{n}\left((-1)^{p v}, \bar{q}\right)
$$

where we note that the decomposition into affine $u(1)$ characters at level $4 n=4 p p^{\prime}$

$$
\varkappa_{j}^{n}(\pm 1, q)=\varkappa_{2 j}^{4 n}(q) \pm \varkappa_{4 n-2 j}^{4 n}(q)
$$

Affine $u(1)$ Sesquilinear Forms (Zero Twist)

- In the examples below, we fix the notation

$$
\varkappa_{j}^{n, \pm}(q)=\varkappa_{j}^{n}(q) \pm \varkappa_{n-j}^{n}(q)
$$

- $\left(\boldsymbol{p}, \boldsymbol{p}^{\prime}\right)=(\mathbf{1}, 2), \boldsymbol{c}=\mathbf{- 2}$, critical dense/dilute polymers [MDKP17]:

$$
\begin{aligned}
& \mathcal{Z}^{(0,0)}\left(\frac{1}{2}\right)=\left|\varkappa_{0}^{2}(q)\right|^{2}+2\left|\varkappa_{1}^{2}(q)\right|^{2}+\left|\varkappa_{2}^{2}(q)\right|^{2}=\left|\varkappa_{0}^{8,+}(q)\right|^{2}+2\left|\varkappa_{2}^{8,+}(q)\right|^{2}+\left|\varkappa_{4}^{8,+}(q)\right|^{2}, \\
& \mathcal{Z}^{(0,1)}\left(\frac{1}{2}\right)=\left|\varkappa_{0}^{2}(-1, q)\right|^{2}+2\left|\varkappa_{1}^{2}(-1, q)\right|^{2}+\left|\varkappa_{2}^{2}(-1, q)\right|^{2}=\left|\varkappa_{0}^{8,-}(q)\right|^{2}+2\left|\varkappa_{2}^{8,-}(q)\right|^{2}+\left|\varkappa_{4}^{8,-}(q)\right|^{2}, \\
& \mathcal{Z}^{(1,0)}\left(\frac{1}{2}\right)=2\left|\varkappa_{1 / 2}^{2}(q)\right|^{2}+2\left|\varkappa_{3 / 2}^{2}(q)\right|^{2}=2\left|\varkappa_{1}^{8,+}(q)\right|^{2}+2\left|\varkappa_{3}^{8,+}(q)\right|^{2}, \\
& \mathcal{Z}^{(1,1)}\left(\frac{1}{2}\right)=2\left|\varkappa_{1 / 2}^{2}(-1, q)\right|^{2}+2\left|\varkappa_{3 / 2}^{2}(-1, q)\right|^{2}=2\left|\varkappa_{1}^{8,-}(q)\right|^{2}+2\left|\varkappa_{3}^{8,-}(q)\right|^{2} .
\end{aligned}
$$

- $\left(p, p^{\prime}\right)=(1,3)$ with $c=-7$

$$
\begin{aligned}
\mathcal{Z}^{(0,0)}\left(\frac{1}{3}\right) & =\left|\varkappa_{0}^{3}(q)\right|^{2}+2\left|\varkappa_{1}^{3}(q)\right|^{2}+2\left|\varkappa_{2}^{3}(q)\right|^{2}+\left|\varkappa_{3}^{3}(q)\right|^{2} \\
& \left.=\left|\varkappa_{0}^{12,+}(q)\right|^{2}+2\left|\varkappa_{2}^{12,+}(q)\right|^{2}+2 \mid \varkappa_{4}^{12,+}(q)\right)\left.\right|^{2}+\left|\varkappa_{6}^{12,+}(q)\right|^{2}, \\
\mathcal{Z}^{(0,1)}\left(\frac{1}{3}\right) & =\left|\varkappa_{0}^{3}(-1, q)\right|^{2}+2\left|\varkappa_{1}^{3}(-1, q)\right|^{2}+2\left|\varkappa_{2}^{3}(-1, q)\right|^{2}+\left|\varkappa_{3}^{3}(-1, q)\right|^{2} \\
& \left.=\left|\varkappa_{0}^{12,-}(q)\right|^{2}+2\left|\varkappa_{2}^{12,-}(q)\right|^{2}+2 \mid \varkappa_{4}^{12,-}(q)\right)\left.\right|^{2}+\left|\varkappa_{6}^{12,-}(q)\right|^{2}, \\
\mathcal{Z}^{(1,0)}\left(\frac{1}{3}\right) & =2\left|\varkappa_{1 / 2}^{3}(q)\right|^{2}+2\left|\varkappa_{3 / 2}^{3}(q)\right|^{2}+2\left|\varkappa_{5 / 2}^{3}(q)\right|^{2} \\
& =2\left|\varkappa_{1}^{12,+}(q)\right|^{2}+\left.2\left|\varkappa_{3}^{12,+}(q)^{2}+2\right| \varkappa_{5}^{12,+}(q)\right|^{2}, \\
\mathcal{Z}^{(1,1)}\left(\frac{1}{3}\right) & =2\left|\varkappa_{1 / 2}^{3}(-1, q)\right|^{2}+2\left|\varkappa_{3 / 2}^{3}(-1, q)\right|^{2}+2\left|\varkappa_{5 / 2}^{3}(-1, q)\right|^{2} \\
& =2\left|\varkappa_{1}^{12,-}(q)\right|^{2}+\left.2\left|\varkappa_{3}^{12,-}(q)^{2}+2\right| \varkappa_{5}^{12,-}(q)\right|^{2} .
\end{aligned}
$$

- $\left(\boldsymbol{p}, \boldsymbol{p}^{\prime}\right)=(2,3), \boldsymbol{c}=\mathbf{0}$, critical bond [MDKP17] and critical site percolation [MDKP23]:

$$
\begin{aligned}
& \mathcal{Z}^{(0,0)}\left(\frac{2}{3}\right)=\left|\varkappa_{0}^{6}(q)\right|^{2}+2 \varkappa_{1}^{6}(q) \varkappa_{5}^{6}(\bar{q})+2\left|\varkappa_{2}^{6}(q)\right|^{2}+2\left|\varkappa_{3}^{6}(q)\right|^{2}+2\left|\varkappa_{4}^{6}(q)\right|^{2}+2 \varkappa_{5}^{6}(q) \varkappa_{1}^{6}(\bar{q})+\left|\varkappa_{6}^{6}(q)\right|^{2} \\
& =\left|\varkappa_{0}^{24,+}(q)\right|^{2}+2 \varkappa_{2}^{24,+}(q) \varkappa_{10}^{24,+}{ }_{(\bar{q})}+2\left|\varkappa_{4}^{24,+}(q)\right|^{2}+2\left|\varkappa_{6}^{24,+}(q)\right|^{2}+2\left|\varkappa_{8}^{24,+}(q)\right|^{2} \\
& +2 \varkappa_{10}^{24,+}(q) \varkappa_{2}^{24,+}(\bar{q})+\left|\varkappa_{12}^{24,+}(q)\right|^{2}, \\
& \mathcal{Z}^{(0,1)}\left(\frac{2}{3}\right)=\left|\varkappa_{0}^{6}(q)\right|^{2}-2 \varkappa_{1}^{6}(q) \varkappa_{5}^{6}(\bar{q})+2\left|\varkappa_{2}^{6}(q)\right|^{2}-2\left|\varkappa_{3}^{6}(q)\right|^{2}+2\left|\varkappa_{4}^{6}(q)\right|^{2}-2 \varkappa_{5}^{6}(q) x_{1}^{6}(\bar{q})+\left|\varkappa_{6}^{6}(q)\right|^{2} \\
& =\left|\varkappa_{0}^{24,+}(q)\right|^{2}-2 \varkappa_{2}^{24,+}(q) \varkappa_{10}^{24,+}(\bar{q})+2\left|\varkappa_{4}^{24,+}(q)\right|^{2}-2\left|x_{6}^{24,+}(q)\right|^{2}+2\left|\varkappa_{8}^{24,+}(q)\right|^{2} \\
& -2 \varkappa_{10}^{24,+}(q) \varkappa_{2}^{24,+}(\bar{q})+\left|\varkappa_{12}^{24,+}{ }_{(q)}\right|^{2}, \\
& \mathcal{Z}^{(1,0)}\left(\frac{2}{3}\right)=\varkappa_{0}^{6}(q) \varkappa_{6}^{6}(\bar{q})+2\left|\varkappa_{1}^{6}(q)\right|^{2}+2 \varkappa_{2}^{6}(q) \varkappa_{4}^{6}(\bar{q})+2\left|\varkappa_{3}^{6}(q)\right|^{2}+2 \varkappa_{4}^{6}(q) \varkappa_{2}^{6}(\bar{q})+2\left|\varkappa_{5}^{6}(q)\right|^{2} \\
& +x_{6}^{6}(q) x_{0}^{6}(\bar{q}) \\
& =\varkappa_{0}^{24,+}{ }_{(q)} \varkappa_{12}^{24,+}(\bar{q})+2\left|\varkappa_{2}^{24,+}(q)\right|^{2}+2 \varkappa_{4}^{24,+}{ }_{(q)} \varkappa_{8}^{24,+}(\bar{q})+2\left|\varkappa_{6}^{24,+}(q)\right|^{2} \\
& +2 \varkappa_{8}^{24,+}{ }_{(q)} \varkappa_{4}^{24,+}{ }_{(\bar{q})}+2\left|\varkappa_{10}^{24,+}(q)\right|^{2}+\varkappa_{12}^{24,+}{ }_{(q)} \varkappa_{0}^{24,+}(\bar{q}), \\
& \mathcal{Z}^{(1,1)}\left(\frac{2}{3}\right)=-x_{0}^{6}(q) \varkappa_{6}^{6}(\bar{q})+2\left|x_{1}^{6}(q)\right|^{2}-2 x_{2}^{6}(q) x_{4}^{6}(\bar{q})+2\left|x_{3}^{6}(q)\right|^{2}-2 x_{4}^{6}(q) x_{2}^{6}(\bar{q})+2\left|x_{5}^{6}(q)\right|^{2} \\
& -x_{6}^{6}(q) x_{0}^{6}(\bar{q}) \\
& =-\varkappa_{0}^{24,+}(q) \varkappa_{12}^{24,+}(\bar{q})+2\left|\varkappa_{2}^{24,+}(q)\right|^{2}-2 \varkappa_{4}^{24,+}(q) \varkappa_{8}^{24,+}(\bar{q})+2\left|\varkappa_{6}^{24,+}(q)\right|^{2} \\
& -2 \varkappa_{8}^{24,+}(q) \varkappa_{4}^{24,+}(\bar{q})+2\left|\varkappa_{10}^{24,+}(q)\right|^{2}-\varkappa_{12}^{24,+}(q) \varkappa_{0}^{24,+}(\bar{q}) .
\end{aligned}
$$

The modular invariants $\mathcal{Z}^{(0,0)}\left(\frac{p}{p^{\prime}}\right)$ agree with the conjectured sesquilinear forms of PearceRasmussen [PR2011] by fixing the undetermined integers therein to $n_{p, p^{\prime}}=-1$ for all p, p^{\prime}.

- For the triplet model (cf. David's talk), $n_{p, p^{\prime}}=2$ for all p, p^{\prime}.

Bezout Conjugates

- The affine $u(1)$ characters have the periodicity

$$
\varkappa_{j+P}^{n}\left((-1)^{p v}, q\right)=\varkappa_{j}^{n}\left((-1)^{p v}, q\right), \quad P=\left\{\begin{array}{ll}
2 n, p v \text { even } \\
4 n, & p v \text { odd }
\end{array} \quad n=p p^{\prime}\right.
$$

- The Bezout conjugates $j+h^{\prime} / 2$ and $\overline{j+h^{\prime} / 2}$ are independent of v and defined by

$$
\begin{aligned}
& j+\frac{h^{\prime}}{2}=p^{\prime} r-p\left(s+\frac{h}{2}\right) \bmod P, \quad \overline{j+\frac{h^{\prime}}{2}}=p^{\prime} r+p\left(s+\frac{h}{2}\right) \bmod P \\
& h^{\prime}=\chi_{p} h=\left\{\begin{array}{ll}
1, & h=1, p \text { odd } \\
0, & \text { otherwise }
\end{array} \quad \chi_{p}= \begin{cases}1, & p \text { odd } \\
0, & p \text { even }\end{cases} \right.
\end{aligned}
$$

These are integers for $h^{\prime}=0$, half-integers for $h^{\prime}=1$. The Bezout construction gives a bijection (for $h^{\prime}=0$ or 1) between the set of Kac labels \mathbb{K} and the cyclic set of $u(1)$ indices $\mathbb{U}_{h^{\prime}}$

$$
\mathbb{K}=\left\{(r, s) \in \mathbb{Z}^{2}: 0 \leq r \leq p-1,0 \leq s \leq \frac{P}{p}-1\right\} \leftrightarrow \mathbb{U}_{h^{\prime}}=\left\{j+\frac{h^{\prime}}{2} \in \mathbb{Z}+\frac{h^{\prime}}{2}: 0 \leq j+\frac{h^{\prime}}{2}<P\right\}
$$

- The zero-twist modular covariant partition functions can then be written in the $u(1)$ form

$$
\mathcal{Z}^{(h, v)}\left(\frac{p}{p^{\prime}}\right)= \begin{cases}\sum_{j=0}^{2 n-1}(-1)^{v r(j)} \varkappa_{j+h^{\prime} / 2}^{n}(q) \varkappa_{\frac{n}{j+h^{\prime} / 2}(\bar{q}),} & p v \text { even } \\ \frac{1}{2} \sum_{j=0}^{4 n-1}(-1)^{v r(j)} \varkappa_{j+h / 2}^{n}(-1, q) \varkappa_{\frac{n}{j+h / 2}}(-1, \bar{q}), & p v \text { odd }\end{cases}
$$

with parity $r(j)=(j+h / 2+\overline{j+h / 2}) /\left(2 p^{\prime}\right) \bmod 2$.

Kac Table of Bezout Conjugates

8	0,0	4,4	8,8	12,12	16,16	20,20	0,0
7	3,21	7,1	11,5	15,9	19,13	23,7	3,21
6	6,18	10,22	14,2	18,6	22,10	2,14	6,18
5	9,15	13,19	17,23	21,3	1,7	5,11	9,15
4	12,12	16,16	20,20	0,0	4,4	8,8	12,12
3	15,9	19,13	23,17	3,21	7,1	11,5	15,9
2	18,6	22,10	2,14	6,18	10,22	14,2	18,6
1	21,3	1,7	5,11	9,15	13,19	17,23	21,3
0	0,0	4,4	8,8	12,12	16,16	20,20	0,0
	0	1	2	3	4	5	6

$\frac{17}{2}$	$\frac{45}{2}, \frac{51}{2}$	$\frac{53}{2}, \frac{59}{2}$	$\frac{61}{2}, \frac{67}{2}$	$\frac{69}{2}, \frac{75}{2}$	$\frac{77}{2}, \frac{83}{2}$	$\frac{85}{2}, \frac{91}{2}$	$\frac{93}{2}, \frac{3}{2}$
$\frac{15}{2}$	$\frac{51}{2}, \frac{45}{2}$	$\frac{59}{2}, \frac{53}{2}$	$\frac{67}{2}, \frac{61}{2}$	$\frac{75}{2}, \frac{69}{2}$	$\frac{83}{2}, \frac{77}{2}$	$\frac{91}{2}, \frac{85}{2}$	$\frac{3}{2}, \frac{93}{2}$
$\frac{13}{2}$	$\frac{57}{2}, \frac{39}{2}$	$\frac{65}{2}, \frac{47}{2}$	$\frac{73}{2}, \frac{55}{2}$	$\frac{81}{2}, \frac{63}{2}$	$\frac{89}{2}, \frac{71}{2}$	$\frac{1}{2}, \frac{79}{2}$	$\frac{9}{2}, \frac{87}{2}$
$\frac{11}{2}$	$\frac{63}{2}, \frac{33}{2}$	$\frac{71}{2}, \frac{41}{2}$	$\frac{79}{2}, \frac{49}{2}$	$\frac{87}{2}, \frac{57}{2}$	$\frac{95}{2}, \frac{65}{2}$	$\frac{7}{2}, \frac{73}{2}$	$\frac{15}{2}, \frac{81}{2}$
$\frac{9}{2}$	$\frac{69}{2}, \frac{27}{2}$	$\frac{77}{2}, \frac{35}{2}$	$\frac{85}{2}, \frac{43}{2}$	$\frac{93}{2}, \frac{51}{2}$	$\frac{5}{2}, \frac{59}{2}$	$\frac{13}{2}, \frac{67}{2}$	$\frac{21}{2}, \frac{75}{2}$
$\frac{7}{2}$	$\frac{75}{2}, \frac{21}{2}$	$\frac{83}{2}, \frac{29}{2}$	$\frac{91}{2}, \frac{37}{2}$	$\frac{3}{2}, \frac{45}{2}$	$\frac{11}{2}, \frac{53}{2}$	$\frac{19}{2}, \frac{61}{2}$	$\frac{27}{2}, \frac{69}{2}$
$\frac{5}{2}$	$\frac{81}{2}, \frac{15}{2}$	$\frac{89}{2}, \frac{23}{2}$	$\frac{1}{2}, \frac{31}{2}$	$\frac{9}{2}, \frac{39}{2}$	$\frac{17}{2}, \frac{47}{2}$	$\frac{25}{2}, \frac{55}{2}$	$\frac{33}{2}, \frac{63}{2}$
$\frac{3}{2}$	$\frac{87}{2}, \frac{9}{2}$	$\frac{95}{2}, \frac{17}{2}$	$\frac{7}{2}, \frac{25}{2}$	$\frac{15}{2}, \frac{33}{2}$	$\frac{23}{2}, \frac{41}{2}$	$\frac{31}{2}, \frac{49}{2}$	$\frac{39}{2}, \frac{57}{2}$
$\frac{1}{2}$	$\frac{93}{2}, \frac{3}{2}$	$\frac{5}{2}, \frac{11}{2}$	$\frac{13}{2}, \frac{19}{2}$	$\frac{21}{2}, \frac{27}{2}$	$\frac{29}{2}, \frac{35}{2}$	$\frac{37}{2}, \frac{43}{2}$	$\frac{45}{2}, \frac{51}{2}$
	0	1	2	3	4	5	6

- Kac tables of Bezout conjugates $\left.\{j, \bar{j}\}\right|_{h=0}$ and $\left.\left\{j+\frac{1}{2}, \overline{j+\frac{1}{2}}\right\}\right|_{h=1}$ for $\left(p, p^{\prime}\right)=(3,4)$. The periodicity is $P=2 n$ in the left panel and $P=4 n$ in the right panel. Only Bezout conjugates within the framed box in the lower left contribute to the modular covariant partition functions.

Checks on Conjectured Standard Module Traces

- For critical bond percolation (dense case with $\left(p, p^{\prime}\right)=(2,3)$ and $\left.\gamma=0\right)$, the conjecture can be confirmed because all of the eigenvalues are known analytically [MDKP2017].
- For critical site percolation (dilute case with $\left(p, p^{\prime}\right)=(2,3)$ and $\left.\gamma=0, \pi\right)$, the conjecture can be checked against the 162 leading eigenvalues obtained numerically [MDKP2023] by solving the logarithmic form of the Bethe ansatz equations.
- Indeed, for $\left(p, p^{\prime}\right)=(2,3)$ our conjecture agrees, in both dense and dilute cases, with our previous results for the four twisted conformal partition functions.
- Our conjecture, results from simply replacing $\Delta_{r, s}^{2,3} \mapsto \Delta_{r, s}^{p, p^{\prime}}$. In the dense cases, for general (p, p^{\prime}), our results agree with those of [PasquierSaleur90] based on mappings.
- For the "full" partition function (obtained by summing over $h, v=0,1$), with general γ, our conjecture leads to an infinite sesquilinear Verma form that (after some nontrivial number theory!) agrees with the result of [FSZ87].
- In all cases, our conjecture leads to modular covariant partition functions.
- For $\gamma=0$, the modular invariant partition functions $\mathcal{Z}^{(0,0)}\left(\frac{p}{p}\right)$ agree with the conjectured affine $u(1)$ sesquilinear forms of Pearce-Rasmussen [PR2011] with $n_{p, p^{\prime}}=-1$ for all p, p^{\prime}.

Conclusion

- Based on our key conjecture, exact expressions are proposed for the modular covariant partition functions of critical dense $A_{1}^{(1)}$ and dilute $A_{2}^{(2)}$ loop models on the square lattice. These are expressed as sesquilinear forms in (i) generic Verma characters for $\frac{\lambda}{\pi} \in(0,1)$ with general twists $\gamma \in \mathbb{R}$ and (ii) affine $u(1)$ characters for $\frac{\lambda}{\pi} \in \mathbb{Q}$ with zero twist ($\gamma=0$).
- These results extend the known results for the modular invariant partition function, based on Coulomb methods, to the full set of four combinations of periodic/antiperiodic boundary conditions with $h, v=0,1$. For $\gamma=0$, the results involve generalized (half-integer) Bezout conjugate pairs.
- All these results apply equally to the 6-vertex and Izergin-Korepin 19-vertex models.
- Despite being described by $\operatorname{sl}(2)$ and $\operatorname{sl}(3)$ models respectively, all of the conformal data and partition functions of these dense and dilute loop models precisely coincide. This implies a very strong form of universality between these critical dense and dilute loop models as log CFTs.
- Specifically, these results imply a very strong form of universality between critical bond percolation on the square lattice [MDKP2017] and critical site percolation on the triangular lattice [MDKP2023] as \log CFTs with $c=0$.
- Similarly, the coincidence of all these conformal results imply a very strong form of universality between critical dense [PR2007,PRV2010] and dilute polymers on the square lattice as log CFTs with $c=-2$.

Thank you for your attention!

Photo courtesy of Patrick Dorey!

