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Z(N) spin chains

Building blocks are the N x N (‘shift’ and ‘clock’) matrices
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with w = ezﬂi/N. For N = 3,
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Some well studied Yang-Baxter integrable N-state quantum spin
chains are of the form
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where 1, 7 and o are N X N matrices, 7 and ¢ occur in position j.



special cases
e N-state quantum Potts model
a,=1 (1)

e Fateev-Zamolodchikov Z(N) model

1
" = SinGaol ) )

e /-state superintegrable chiral Potts model

Each model reduces to the quantum Ising model for N = 2.
Models (1) and (2) are equivalent for N = 3.

Model (3) still something of an enigma..



Potts and Temperley-Lieb
Recall the N-state quantum Potts representation of the TL algebra
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Potts model hamiltonian

Hp=—Zej,



Ongoing decades of fun with TL models

e mappings between models,
faithful representations etc

e combinatorics
e stochastic processes

@ oo



Several known generalisations of TL algebra

Some examples

e multi-coloured TL algebra

Grimm and Pearce (1992)
Bisch and Jones (1997)

aka k-colour Fuss-Catalan algebras

e ‘blob’ algebra

Martin and Saleur (1994)



Power of the algebraic/pictorial approach

It is known that the TL algebra, along with the pictorial
representation, can be used to derive the full eigenspectrum of the
TL Hamiltonian, in that case via the Bethe Ansatz

o Levy (1990) (1991)

e Martin and Saleur (1994)

o de Gier and Pyatov (2004)

e Nepomechie and Pimenta (2016)



Superintegrable chiral Potts (SICP) chain

N-1
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~ sin(wn/N)’ n = sin(n/N)

The chiral Potts model has an R-matrix when

A cos ¢ = cos ¢.

The special values ¢ = ¢ = % define the superintegrable case.

Hsrcp admits an infinite set of commuting conserved charges.

Hsicp only solved for periodic bc's.
(N-state free parafermions only solved for open bc's)



Hgicp can be written in terms of a coupled TL algebral
[N = 3 case, J Fjelstad and T Ménsson, JPA 45, 155208 (2012)]

For general N there are N — 1 generators ejgk) which satisfy

(Y2 _ (k)
(ej ) = Qg
(), k) _ (K

o LY -
e,-(k)ejw = ejwei(k) li—j]>1
e}k)ejm = ejwefk) = 0 k+/
with Q = VN.

For N = 2 this reduces to the single TL generator e;.

For N = 3 we label the generators by e; = e}l) and f; = e}2).
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Abstract

The Hamiltonian of the N-state superintegrable chiral Potts (SICP) model is
written in terms of a coupled algebra defined by N — 1 types of Temper-
ley-Lieb generators. This generalises a previous result for N = 3 obtained by
Fjelstad and Ménsson (2012 J. Phys. A: Math. Theor. 45 155208). A picto-
rial representation of a related coupled algebra is given for the N =3 case



In general we can write

N
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Then, for periodic bc's
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And for open bc's

Hsicp = —(N-1)(L(A+1)-1)
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The generators e; * also satisfy additional cubic relations.

For the N = 3 case
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For N = 4 with & = e, £ = e and g; = &, a typical cubic

relation is of the type
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A different way to write the N = 3 SICP hamiltonian

This originates from the staggered nature of the coupled operators e; and
f; between odd and even sites:

2 L
Hsicp = _ﬁ; [A(e2jo1 = hje1) + (&2 — ) ]-

Using the definitions, with (w — w?)/v/3 = i, gives
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Hsicp = _7 Z[ ( '2) + UJU}“ B (UJU}+1)2]

The last terms aLaLl and (0L01+1)2 are omitted for open bc's.



Pictorial representation
We gave a pictorial representation of the generators for N = 3:

U
¢
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The key feature of the pictorial representation is a pole around
which loops can become entangled. Here we choose the position of
the pole to be at one end of the chain. In the associated loop
diagrams, closed (contractible) loops have weight @, with @ = /3.
The weight of closed (non-contractable) loops encircling the red
line is zero.



The case @ = —2 and loops encircling the red line also zero

Math. Res. Lett.
Volume 25, Number 6, 1911-1936, 2018

Extremal weight projectors

HoOEL QUEFFELEC AND PAUL WEDRICH

We introduce a quotient of the affine Temperley-Lieb category that
encodes all weight-preserving linear maps between finite-dimen-
sional slp-representations. We study the diagrammatic idempotents
that correspond to projections onto extremal weight spaces and
find that they satisfy similar properties as Jones-Wenzl projectors,
and that they categorify the Chebyshev polynomials of the first
kind. This gives a categorification of the Kauffman bracket skein
algebra of the annulus, which is well adapted to the task of cate-
gorifying the multiplication on the Kauffman bracket skein module
of the torus.

1. Introduction

The Lie algebra sly and its universal enveloping algebra U(sls) are ubiqui-



SICP N = 3 example, generators ¢; and f;

The generators ¢; are like the usual TL generators, with loops not
encircling a line.

The generators f; involve loops around the single red line.

Generators for the L = 2 site open chain:

S L = L (=< 2 = = | =
N N = =2 ~
€3 f fa f3



SICP N = 3 example, generators ¢; and f;

Algebraic relations can be proved via the diagrams.
We make use of the usual Kauffman-type relations.

The most interesting cubic relations are fif; = f; and fif, = f,.



Proof of the relation L, =

= —w
Y a— N4 — -

The knot can be resolved!

Key ingredients are crossing relations for loops encircling a red line.



Line crossing relations

- i —
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For this example with N = 3 the parameter is w = o273

This value can be derived topologically.



The open N = 3 SICP chain with L =2

Generators and basis states for the L = 2 site open chain

TR R 2 2R 112

—
f2 f3
WYL g S
as !
Act on the basis states ay, ..., as with the generators and resolve

the diagrams to construct eigenvalues of Hi,,, to match
eigenvalues of Hgop.



Concluding remarks

We have given a pictorial representation for a coupled algebra
which defines the N = 3 state SICP model, for which the weight of
contractable loops is @ = V3 and the weight of closed
(non-contractable) loops encircling a line is zero.

There are many points to follow up!



Some examples:

» We have only discussed open boundary conditions.

P Another known representation of this coupled algebra
corresponds to the staggered spin-1/2 XX chain.
It has two sets of generators ¢; and f; and Q = 2.

» g-deformation?

P The algebraic approach opens up a path towards Baxterisation
of the SICP model.



But ...

A
[

b=

There is a problem!

We found a problem with the diagrammatic proof for some of the
algebraic commutation relations for the SICP model representation.

There is no problem for the staggered XX representation.



But ...

We finally fixed it!
Pictorial representation for N = 3 and also for general N.
A key ingredient is work by Jaffe and Liu.

This is the topic of the talk by Remy Adderton in Week 3.
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Planar Para Algebras, Reflection Positivity

Arthur Jaffe, Zhengwei Liu

Harvard University, Cambridge, MA 02138, USA. E-mail: arthur_jaffe@harvard.edu

Received: 11 May 2016 / Accepted: 7 September 2016
Published online: 22 December 2016 — © Springer-Verlag Berlin Heidelberg 2016

Abstract: We define a planar para algebra, which arises naturally from combining
planar algebras with the idea of Zy para symmetry in physics. A subfactor planar para
algebra is a Hilbert space representation of planar tangles with parafermionic defects
that are invariant under para isotopy. For each Zy, we construct a family of subfactor
planar para algebras that play the role of Temperley—Lieb—Jones planar algebras. The
first example in this family is the parafermion planar para algebra (PAPPA). Based
on this example, we introduce parafermion Pauli matrices, quaternion relations, and
braided relations for parafermion algebras, which one can use in the study of quantum
information. An important ingredient in planar para algebra theory is the string Fourier
transform (SFT), which we use on the matrix algebra generated by the Pauli matrices.
Two different reflections play an important role in the theory of planar para algebras.
One is the adjoint operator; the other is the modular conjugation in Tomita-Takesaki
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CrossMark
Abstract
‘We construct lattice parafermions for the Z(N) chiral Potts model in terms of
quasi-local currents of the underlying quantum group. We show that the
conservation of the quantum group currents leads to twisted discrete-holo-
morphicity (DH) conditions for the parafermions. At the critical Fateev—
Zamolodchikov point the parafermions are the usual ones, and the DH con-
ditions coincide with those found previously by Rajabpour and Cardy. Away
from the critical point, we show that our twisted DH conditions can be
understood as deformed lattice current conservation conditions for an under-
lying perturbed conformal field theory in both the general N > 3 and N = 2
Ising cases.



2) Free parafermions

Batchelor et al. AAPPS Bulletin (2023) 33:29 AAPPS Bulletin
https://doi.org/10.1007/5s43673-023-00105-3

o . ®
A brief history of free parafermions

Murray T. Batchelor'"®, Robert A. Henry' and Xilin Lu'

Abstract
In this article we outline the historical development and key results obtained to date for free parafermionic spin
chains. The concept of free parafermions provides a natural N-state generalization of free fermions, which have long
underpinned the exact solution and application of widely studied quantum spin chains and their classical counter-
parts. In particular, we discuss the Baxter-Fendley free parafermionic Z(N) spin chain, which is a relatively simple non-
Hermitian generalization of the Ising model.

L Keywords Quantum spin chains, Free fermions, Free parafermions

1 Introduction below, the Hamiltonian of this spin chain takes a similar
The concept of free fermions is fundamental to the cel-  form to that of the quantum Ising chain, but the spins
ebrated exact solution of the two-dimensional Ising have N allowed states, with Baxter’s Hamiltonian reduc-
model in zero magnetic field [1-3] and its one-dimen-  ing to the Ising model for N = 2. Baxter found that the



What are exceptional points?

Exceptional points are spectral singularities in the parameter space
of a system in which two or more eigenvalues, and their
corresponding eigenvectors, simultaneously coalesce.

Such degeneracies are peculiar features of nonconservative systems
that exchange energy with their surrounding environment.

EPs are level degeneracies induced by non-Hermiticity.

They exhibit exotic topological phenomena associated with the
winding of eigenvalues and eigenvectors.

A vast and highly active topic!



The Baxter-Fendley Z(N) spin chain

A model that received no attention for a long time was found by
Rodney Baxter in 1989.

R J Baxter, Phys Lett A 140, 155 (1989); J Stat Phys 57, 1 (1989)

For an L-site chain (with OBC) this model is defined as

L L-1
-H = Z’]‘j + A Z O'JJ-rJJ-+1
j=1

J=1

It reduces to the quantum Ising model for N = 2.

For N = 3 think of it as ‘half’ a Potts chain.



The eigenvalues of H have a simple form!

—E =P + WPy + -+ 0e

for any choice of p, =0,..., N — 1. Recall w = 2N

Initially a numerical observation.

N = 2 is free fermions | —E = +¢; £ o+ -+ £ ¢,

: L. .
Gives all N~ eigenvalues in the spectrum.

The quasi-energies € are known exactly.

The model originates as the hamiltonian limit of the 7, model,
a variant of the chiral Potts model.



e Fendley (2014) derived this result using a generalisation of the
Jordan-Wigner transformation, namely the Fradkin-Kadanoff
transformation to parafermionic operators originally
introduced for the N-state clock models.

P Fendley, J. Phys. A 47, 075001 (2014)

e Baxter (2014) and Au-Yang and Perk (2014,2016) applied
Fendley's parafermionic approach to the more general 7
model with open boundaries.

R J Baxter, J Phys A 47, 315001 (2014)

H Au-Yang and J H H Perk, J Phys A 47, 315002 (2014); arXiv:1606.06319

e Fendley (2019) developed algebraic techniques which were
also applied to multispin free fermion systems and adopted
and generalised by Alcaraz and Pimenta (2020, 2021) to a
class of multispin free fermion and free parafermion models.



The Baxter-Fendley hamiltonian is non-Hermitian, with complex
energy eigenvalues for N = 3.

: : 2
For any eigenvalue E, there are other eigenvalues wE, W’ E, ...

This is the Z(N) generalisation of the E <> —E Ising symmetry
(recall w = =1 for N = 2).

In general non-Hermitian hamiltonians describe the dynamics of
physical systems that are not conservative.

The properties of the model are well worth exploring, being a rare
example of an exactly solved non-Hermitian many-body system.



Free parafermion eigenspectrum (N =3, L = 4)
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Free parafermion eigenspectrum (N =3, L =4, A =1)
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(left) complex energy spectra obtained from the quasienergies
(blue dots), and values obtained from exact diagonalisation of the
full Hamiltonian (red crosses).

(right) quasienergies ¢;.



Motivation for the present work

Our previous work on this model showed unusual properties for
N = 3 such as diverging correlation functions with system size L.

Z.-Z. Liu, R. A. Henry, MTB and H.-Q. Zhou, JSTAT 2019, 124002

Some ground-state expectation values for the free parafermion Z(N) spin chain

How to explain this behaviour?



The solution

F C Alcaraz, MTB and Z-Z Liu, J Phys A 50, 16LT03 (2017)

—H= ZTJ +AZ ,+1
j=1

—E=prj€kj7 pj:o,]_,...,N—l7 W:e2ﬂ-i/N

Jj=1

1N
€ = (1 + AN L opN2 cosk)

k; satisfy

sin(L+ 1)k = —A"?sin Lk

2 . 2/N
for A\=1,ki=20 j=1,..., Land ¢ = (2cos &)



Free parafermion eigenspectrum (N =3, L =4, \ = e27ri¢/N)
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Exceptional points

For real positive ), the quasi-energies ¢; are always positive and
distinct.

For complex )\, a pair of them may become equal at certain values
of A\, which depend on N and L.

We call these quasi-energy exceptional points.

We call EPs in the energy spectrum Hamiltonian exceptional
points.

= quasi-energy EPs give rise to Hamiltonian EPs.

Moreover, we can calculate them.



A quasi-energy EP will occur when
sin(L + 1)k = =AM ?sin Lk

has a repeated root, meaning that both this equation and its
derivative are satisfied.

The EPs are pairs of values kgp and Agp which satisfy these
equations simultaneously.

In this way we obtain kgp as the solution to
sin(2L+ 1)k — (2L +1)sink =0,
with the corresponding value Agp given by

) = —sin(L+ 1)k 2N
a sin Lk ’
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0.00
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(left) k solutions for L = 4

(middle) difference between smallest and second-smallest
quasi-energies for N = 2

(right) difference between smallest and second-smallest
quasi-energies for N = 3

The corresponding values of Agp are also shown as crosses.
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Concluding remarks

P We have located the quasi-energy EPs in the complex plane.

P Numerical tests confirm they correspond to Hamiltonian EPs.
P And also confirm that the corresponding eigenvectors coalesce.
P For large L they are on the unit circle in the complex A plane.

P There are other degeneracies in the energy eigenspectrum, but
they are not EPs.

P Although in the complex plane, EPs can influence properties
(such as correlations) along the real axis..

full details in SciPost Physics 15, 016 (2023)



3) The spin-1 biquadratic model

The known integrable (isotropic) spin-1 chains
H = Z [Jl(sj “Sj1) + Lo(S; - Sj+1)2]
Jj

e Uimin-Lai-Sutherland model (1970,1974,1975)

e Takhtajan-Babujian model (1982)

J2 = —Jl



The other well known (isotropic) spin-1 chains

H= Z [Jl(sj “Sj41) + S(S; - Sj+1)2]
J
e spin-1 Heisenberg model

o Affleck-Kennedy-Lieb-Tasaki (AKLT) model (1987)

J2= Jl

1
3

J» =0 is key to the Haldane conjecture (1983)

The AKLT model has an exact valence bond groundstate



The spin-1 biquadratic model

H = ZJ2(S_/' . Sj+1)2
J

The model is ferromagnetic for J, > 0
and antiferromagnetic for J, < 0.

Parkinson (1987,1988) observed a partial mapping of states with
the anisotropic spin-1/2 XXZ chain at A = =3/2.

He also noted that if h; = (S; - SJ-+1)2 — 1 then

2
hj = 3hJ




Exact results via Temperley-Lieb equivalence

PHYSICAL REVIEW B VOLUME 40, NUMBER 7 1 SEPTEMBER 1989

q

Spectrum of the bi atic spin-1 antiferr ic chain

Michael N. Barber
Dep: of Math ics and Centre for Math ical Analysis, School of Mathematical Sciences,
Australian National University, GPO Box 4, Canberra, Australian Capital Territory 2601, Australia

Murray T. Batchelor
Department of Math ics, Unil ity of , Parkville, Victoria 3052, Australia
and Centre for Mathematical Analysis, School of Mathematical Sciences,
Australian National University, GPO Box 4, Canberra, Australian Capital Territory 2601, Australia
(Received 13 March 1989)

An exact correspondence between the staggered biquadratic spin-1 antiferromagnetic chain and
the Hamiltonian limit of the ni Potts model is established for finite chains with free
ends. For uniform interactions this equivalence is used (via a further exact mapping to a Bethe an-
satz soluble XXZ model) to calculate exactly the infinite lattice values of the ground-state energy per
site and the (nonzero) gap to the lowest-energy excited state. Periodic boundary conditions and the
nature of the ground state as a function of bond alternation are also discussed.

Model independently solved by Andreas Kliimper (1989,1990)



EUROPHYSICS LETTERS 15 August 1989
Europhys. Lett., 9 (8), pp. 815-820 (1989)

New Results for g-State Vertex Models and the Pure
Biquadratic Spin-1 Hamiltonian.

A. KLUMPER

Institut fur Theoretische Physik, Universitit zu Koln
Zilpicher Strasse 77, D-5000 Koln 41, F.R.G.

(received 17 April 1989; accepted 5 June 1989)

PACS. 75.10H - Ising and other classical spin models.
PACS. 75.10J - Heisenberg and other quantized localized spin models.

Abstract. - New exactly solvable SO(g)-invariant g-state vertex models are introduced. We
employ a new method using inversion relations which enables us to determine directly the
spectra of the transfer matrices. The results are applied to related quantum spin chains. A
special case is the pure biquadratic spin-1 Hamiltonian which turns out to be noneritical. Various
quantities are calculated, e.g., the energy gap and the correlation length.



€ = (SJ . SJ'+1)2 -1

e = 3¢
€€+1€ = €&
ee = €¢ |I—j| >1

In fact three TL equivalent models, each a rep of the TL algebra:

1) spin-1 biquadratic chain
2) spin-1/2 XXZ chain at A = -3/2
3) O-state Potts chain

Used to obtain exact ground state energy, mass gap etc



The spin-1 bilinear-biquadratic model

H = Z [cosQ(Sj +Sji1) +sind (S; - Sj+1)2]
J

nematic?

phase diagram [from Mikeska & Kolezhuk, Lecture Notes in Physics (2004)]



Ferromagnetic magic

Groundstate degeneracies « Fibonacci-Lucas sequences

L OBC PBC
E%C(D) [dim(Q0%C) | EPS(L) | dim(QFF°)
20 0 8 0 8
3] o 21 0 18
4| o 55 0 47
51 o 144 0 123
6| o 377 0 322
71 o 987 0 843
8| o 2584 0 2207
10| o 17711 0 15127
. osoy, _ (3+VB)" - (3-vB)!
dim(Q; ) = , L=2
2L+1\/§
L L
3+v5) "+ (3—-+5
dim(QPC) = (3+V5)" + (3-5) ’ |53

2L



Now in terms of the golden ratio R = (v/5 —1)/2

dlm(Q?BC) — (R—2L—2 _ R2L+2)/(R—2 _ RZ)’
dim(Q, ") = R7?F + R,

This leads to non-zero residual entropy

S, =-2logR

see also

N Read and H Saleur, Nucl. Phys. B, 777, 263-315 (2007)

B Aufgebauer and A Kliimper, J. Stat. Mech. P05018 (2010)

Y-T Oh, H Katsura, H-Y Lee and J H Han, Phys. Rev. B 96, 165126 (2017)

S Moudgalya and O | Motrunich, Phys. Rev. X 12, 011050 (2022)

L
L

\%

I\



Entanglement entropy

For ferromagnetic states it has been established that there is a
connection between entanglement entropy and the counting rule
for Nambu-Goldstone modes in Spontaneous Symmetry Breaking

(SSB).

In particular, the entanglement entropy S(n) for the highly
degenerate ground states scales logarithmically, in the
thermodynamic limit, with the block size n according to

N
S(n) = TB log, n + Sp.
The prefactor is precisely half the number Ng of type-B GMs.

Connecting with work by Castro-Alvaredo & Doyon (2012) from a
field theoretic perspective, the above result leads to the
identification of the number of type-B GMs with the fractal
dimension df, namely dr = Np.



For this model we have constructed sequences of degenerate
ground states generated from highest and generalized highest
weight states to establish that the entanglement entropy indeed
scales logarithmically with block size in the thermodynamic limit,
with the prefactor indeed being half the number of type-B
Goldstone modes.

The SSB pattern is from SU(3) to U(1) x U(1), with two type-B
GMs.
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FIG. 1. (a) The entanglement entropy S..(n, M1, M>) vs log, n for the
ferromagnetic spin-1 biquadratic model. Here M; = M, = L/4 for
the indicated L values. (b) The entanglement entropy S;(n, M, M3)
vs log, n. Here M, = L/4 and M3 = L/5 for the indicated L values.
The block size n is a multiple of two, and ranges from 10 to 40.
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FIG. 2. (a) The entanglement entropy S.(n, M, M3) vs log, n. Here
M, = L/4 and M; = L/8 for the indicated L values. A generalized
highest weight state is chosen to be [1110...1110). The block size n
is a multiple of four, and ranges from 12 to 60. (b) The entanglement
entropy S.(n, M1, M) vslog, n. Here M, = L/12 and M, = L/12 for
the indicated L values. A generalized highest weight state is chosen
to be [10—1-101...10-1-101). The block size n is a multiple of six,
and ranges from 12 to 120.
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In each of the plots the prefactor is close to 1, within errors of 1.2% to 2%.
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Concluding remarks

P The highly degenerate ferromagnetic groundstates of the
spin-1 biquadratic model have a rich mathematical structure.

P The groundstate degeneracies for this model are
asymptotically the golden spiral.

P They are also highly entangled, scale-invariant states,
originating from spontaneous symmetry breaking from SU(3)
to U(1) x U(1) with two type-B Goldstone modes.

P The entanglement entropy scales logarithmically with the
block size in the thermodynamic limit, with the prefactor
being half the number of type-B Goldstone modes.

» The latter in turn is identified to be the dimension of an
abstract fractal in the Hilbert space.
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physical and ical structure of fer ground states are particularly rich. We show that the highly degenerate and highly entangled ground states
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entropy scales logarithmically with the block size in the thermodynamic limit, with the prefactor being half the number of type-B Goldstone modes.

The latter in turn is identified to be the fractal dimension.
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