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ASEP on the half-line

m We study the Asymmetric Simple Exclusion Process on the half-line

m We want to find the transition probability from p to v in time t > 0
Pi(pu — v).

m Bethe ansatz is difficult due to lack of particle conservation.

m We will recover this quantity as a reduction of an integrable vertex model.
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Stochastic Six Vertex Model

m We study the six-vertex model with stochastic weights

1 q-g(x) 1—q-g(x)

1—x
'g(X):1_qX

m The classical partition function is computed by summing over connected
path configurations

Z=> g()"(1-e(x)"(ag(x))"(1 - qg(x))".

is simple rational function.
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Yang-Baxter Equation

m The R-matrix of the model satisfies the Yang-Baxter equation
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Yang-Baxter Equation

m The R-matrix of the model satisfies the Yang-Baxter equation

Ri2(y/x)Ri3(z/x)Re3(z/y) = Res(z/y)Ris(z/x)Ri2(y/x)
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m Proof by explicit check.
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Boundary Vertices

m We introduce boundary vertices which depend on 2 parameters
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Boundary Vertices

m We introduce boundary vertices which depend on 2 parameters

‘\ N ,
—h(x) h(x)
1—h h 1
(x) (x) g +
1 — 2

m h(x) = ac(a—x)(c—x)

m These weights are also stochastic.
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Reflection Equation

m The boundary weights form the entries of a stochastic K-matrix which
satisfies the reflection equation

Ro1 (;) Ki(x)Riz(xy) Ka(y) = Ka(y) Ro1(xy ) Ki(x) R (;) :
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Reflection Equation

The boundary weights form the entries of a stochastic K-matrix which
satisfies the reflection equation

Ro1 (;) Ki(x)Riz(xy) Ka(y) = Ka(y) Ro1(xy ) Ki(x) R (;) :

Represented graphically

o=yt k1
[
Jj1 — x 1
ks
4 X
ka
Ip <— y ¢

X

2=y
: —1
J1 — X
1+ X

i2<—y
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Symmetric Function

m We define the partition function indexed by configurations pu, v

G;//,u(Xl, ..

.,XL) =

V3 12

H

81

1
0— X,

0+ x;

0— x;
0<—X1
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m We define the partition function indexed by configurations pu, v
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Symmetric Function

m We define the partition function indexed by configurations pu, v

Vy U7 1
O%XL
Gl//,u(le- .. ,XL) =
°
0 —>X1_1
0+ x1
[42 41

m This is a three-parameter symmetric function, with g, a, c.

Proposition

The function G, ,, is a symmetric function in the x-alphabet.

m It is sufficient to show that G, /,(x1,x2) = G,/ (x2, x1).

8/25



Evaluation

m When the bottom state is empty the partition function is given by the
simplified diagram

v

° 0O 0 0 00 0O
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Evaluation

m When the bottom state is empty the partition function is given by the
simplified diagram

v

° 0O 0 0 00 0O

0 0 O

m Diagrammatic proof by Yang-Baxter application.
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Triangular Partition Function

m We define the partition function

° 0— x,
° 0
° 0
Z/_(Xl...,XL)Z [ 0—>X2_1.
° 0 — x; '
0O 0 0 0 O
T 7 T
X]. X2 ...... XL
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m We define the partition function
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Triangular Partition Function

m We define the partition function

Zi(x1...,x1) = ° 0— x5

0 0 0 0 O
T 7 T

X]. X2 o o o o o o XL

m This is a non-trivial partition function due to the generic boundary
parameters.

When both top and bottom configurations are empty

G@/@(Xl, c e ,X/_) — Z(Xl, c o ,XL).
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Pfaffian formula

The triangular partition function admits a Pfaffian formula

Zi(x1, ..., x) = H 1_Xi)<j'Pf<Xi_)<jQ(Xi,><j)> :

X,'—XJ'

1 — xix;
1<i<j<L

1<ij<L

where

h(xi)h(x;) (1 — q)xix;
ac 1—gxixj

Qxi, x;) = (1 = h(x:))(1 = h(x;)) —
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Pfaffian formula

The triangular partition function admits a Pfaffian formula

1 — xix;
Z[_(Xl,...,XL): H ij Pf(l—XX Q(XI,XJ)> ’
/ J 1Y

1<i<j<L 1<i,j<L

where

h(xi)h(x;) (1 — gq)xix;

ac 1—gxixj

Qxi, x;) = (1 = h(x:))(1 = h(x;)) —

m Presented first by Behrend—Fischer—Koutschan in 2023.
m The triangular partition function obeys certain recursion relations.

m For example

Zi(X1y .y XL—2y XL—1, XL) =27 _5(x1...,xL—2).
xp=1/x;_1

m These recursion relations completely determine Z;.
m Shuffle product techniques are convenient to prove the Pfaffian satisfies

the recursion relations.
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Aside: Alternating Sign Matrices

m Scale all weights to be equal to 1.

m The triangular partition function will enumerate diagonally symmetric
alternating sign matrices (DSASM).

m For example

——

|

o
—t
o r O oo

N—

m [hese numbers are
D,=1,2,516,67,368,---

m Kuperberg's celebrated 2000 paper enumerated many symmetry classes of
ASM, but did not present DSASM.

m T he enumeration was recently completed by Behrend—Fischer—Koutschan
in 2023.
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Integral Formula

When the bottom configuration is empty, G has an integral formula

dWl dw -1 1
G, p(xi, - .. XL)—]{ nZ/_+n X1,...,X[_,W1 e, W, )

omi
1 — qgw;w;
fl/ 1 /
H ) ] [ tzan

1<i<j<n

The contours enclose simple poles at all points w; = x1,...,x.. n is the
number of non-zero entries in v.
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Integral Formula

When the bottom configuration is empty, G has an integral formula

dWl dw -1 1
G, p(xi, - .. XL)—]{ nZ/_+n X1,...,X[_,W1 e, W, )

omi
wi 1 — qw;w;
fl/ 1 /
H ) ] [ tzan

1<i<j<n

The contours enclose simple poles at all points w; = x1,...,x.. n is the
number of non-zero entries in v.

m Recursive proof over the entries in v.
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ASEP limit

m Consider the special value x; =1 — (1 — q)e.
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ASEP dynamics

m We can recover the ASEP dynamics from the function G.

Pi(pe = v) = lim G,/ (x1, ..., x0)
e—0

x,-zl—(l—q)e,L:t/(Ze).
m This can be computed for

m empty initial state
m particle injection only (y = 0)

This transition probability is

_ dwy dw, wi —w; 1 — gww;
P — — 0O “. J J
(0 = v) = a'e ]{ 2miwg 7{ 2w, H [qwj —w; 1 — ww; ]
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Simulations

Pt(v)

0.20

0.15

— Integral formula
0_10_ e Simulation data
0.05
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m We wish to study observables of the open ASEP.
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Observables

m We wish to study observables of the open ASEP.
m Consider the boundary current:

m Recall that coordinates are indexed by v = (v1 > - -+ > vy).

m The probability of having n particles in the system is

Py[n] = Z Pe(0 — v).

]/1>...>Vn21

m Related to the distribution of a height function of a random surface at the
boundary.

m Expect to observe non-Gaussian fluctuations typical of the KPZ universality
class.

m This quantity is expected to obey a large deviation principle described by
macroscopic fluctuation theory (MFT) at the diffusive scale with g =1

(SSEP).
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Dual Family

m We may also define the partition function

1
1—>z,\7,

0(—2/\/]

FM/V(Zl, “ e ,Z/\/l) =

1—z !
O+ 2xn

2 p1
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Dual Family

m We may also define the partition function
4
1 — z,

0(—2/\/]

FM/V(Zl, “ e ,Z/\/l) =

1—z !
0+ =1
L2 231

m The dotted weights have been re-normalised so that

——p — 1.

m F,/, is a symmetric function in the z-alphabet.
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Cauchy ldentity

There is an exchange relation between double-row transfer matrices

. o o o ] 71 . 0— x!
0+ 2z _ x—qz 1 —xz 0+ x
0 — x !  x—z1—gxz o o o 1 1
o ®

0+ x 0+ z

20 /25



Cauchy ldentity

There is an exchange relation between double-row transfer matrices

1

. o o o ] 71 . 0 — x~
0+ 2z _ x—qz 1 —xz 0+ x
0 — x !  x—z1—gxz o o o 1 1
o ®
0+ x 0+ z

m Implies the functions G, F obey a skew-Cauchy summation identity.

20 /25



Cauchy ldentity

There is an exchange relation between double-row transfer matrices

—1

. o o o ] 71 . 0— x
0+ 2z _ x—qz 1 —xz 0+ x
0 — x !  x—z1—gxz o o o 1 1
o ®
0+ x 0+ z

m Implies the functions G, F obey a skew-Cauchy summation identity.

Theorem

Z G&/M(Xl, cee 7X/_)I:,.i/,/(zl, S 7ZM)

M L
_ Xj — qZ; ZiX;
= HH [ Xj — Zj qz,XJ] Z //\(21, 5o 7ZM)G1//>\(X17-..,XL)7

i=1 j=1

where the left is an infinite sum while the right is a finite one.
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Cauchy identity as an observable

m The Cauchy identity can be interpreted naturally as an ASEP observable.
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Cauchy identity as an observable

m The Cauchy identity can be interpreted naturally as an ASEP observable.

O
%
e o o
[ )
%
[ [ ]
= M(x, z) X .
o ®
0O 000 0O
0 0 O

with empty bottom conditions.

m This is effectively
E[F.] =MN(x, z) - G,.

21/25



Pfaffian Cauchy ldentity

m A special case also yields a nice algebraic result.
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Pfaffian Cauchy ldentity

m A special case also yields a nice algebraic result.

When i = v = (), there is a Cauchy summation identity

M
1 — xix
Gi(x1, XL )Fr(z1, L ZM) = h( z o
Zj ( )Fie( ) H ( )H o
M
HH[X’ = 1‘””]%(}" Xf@(x,,xJ))
il il g = =g L= 1<i,j<L
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An orthogonality conjecture

m There is an early hint of a more general theory of half-line functions.
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m There is an early hint of a more general theory of half-line functions.

In the limit ¢ — oo (v — 0)

%dwl .j[dW"A(Wl,... o) T 0or (W) Pt o, i) = B

271 271

m This is similar to those obtained by Borodin—Petrov and Borodin—Wheeler
for higher-spin models in the full-space.

m Together with the Cauchy identity, the arbitrary initial state G, /,, can be
calculated.

m Proof to come.
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ASEP with initial conditions

m Using the orthogonality conjecture and Cauchy identity we can access
initial conditions of the ASEP.
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The open ASEP with v = 0 has the transition probability:
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1<i<j<n
n
<11
i=1

1 — gw? ( 1 —w; )Vil o ( (1—q)°wt )
(g+a—1—am)(l—qw) \1— qw Pl = wi) (T — qwy)

X lim Fu(wi,...,wy)
C— OO

m This is an alternative to a very difficult Bethe ansatz calculation.

m Generalises earlier work of Tracy—Widom from 2013 on the closed system
(a = 0).

m Observables can be extended to more general initial conditions.
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Future work

m Extend to higher-rank and fused generalisations.

m Dual family F is related to the BC,-symmetric Hall-Littlewood
polynomials through fusion.

m Proof of the orthogonality conjecture will allow a more thorough study of
G, F.

m Investigate scaling limits:

m KPZ scale.

m Diffusive scale (MFT).
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