The Half-space Open Exclusion Process

William Mead

School of Mathematics and Statistics The Univeristy of Melbourne
with Alexandr Garbali, Jan de Gier and Michael Wheeler (arXiv:2312.14348)

MATRIX, Mathematics \& Physics of Integrability
17 July 2024

Outline

1 Six-vertex model with boundaries

Outline

1 Six-vertex model with boundaries
2. Partition function G

Outline

1 Six-vertex model with boundaries
2. Partition function G

3 Open boundary analogue of domain wall partition function

Outline

1 Six-vertex model with boundaries
2. Partition function G

3 Open boundary analogue of domain wall partition function
4 Limit to half-space open ASEP

Outline

1 Six-vertex model with boundaries
2. Partition function G

3 Open boundary analogue of domain wall partition function
4 Limit to half-space open ASEP
5 Observables of the open ASEP

ASEP on the half-line

- We study the Asymmetric Simple Exclusion Process on the half-line

ASEP on the half-line

■ We study the Asymmetric Simple Exclusion Process on the half-line

- We want to find the transition probability from μ to ν in time $t \geq 0$

$$
\mathbb{P}_{t}(\mu \rightarrow \nu)
$$

ASEP on the half-line

- We study the Asymmetric Simple Exclusion Process on the half-line

- We want to find the transition probability from μ to ν in time $t \geq 0$

$$
\mathbb{P}_{t}(\mu \rightarrow \nu)
$$

- Bethe ansatz is difficult due to lack of particle conservation.
- We study the Asymmetric Simple Exclusion Process on the half-line

- We want to find the transition probability from μ to ν in time $t \geq 0$

$$
\mathbb{P}_{t}(\mu \rightarrow \nu)
$$

- Bethe ansatz is difficult due to lack of particle conservation.

■ We will recover this quantity as a reduction of an integrable vertex model.

Stochastic Six Vertex Model

■ We study the six-vertex model with stochastic weights

1

$1-q \cdot g(x)$

Stochastic Six Vertex Model

■ We study the six-vertex model with stochastic weights

$\square g(x)=\frac{1-x}{1-q x}$ is simple rational function.

Stochastic Six Vertex Model

■ We study the six-vertex model with stochastic weights

$\square g(x)=\frac{1-x}{1-q x}$ is simple rational function.

- The classical partition function is computed by summing over connected path configurations

$$
\mathcal{Z}=\sum_{\Omega} g(x)^{\#}(1-g(x))^{\#}(q g(x))^{\#}(1-q g(x))^{\#}
$$

Yang-Baxter Equation

■ The R-matrix of the model satisfies the Yang-Baxter equation

$$
R_{12}(y / x) R_{13}(z / x) R_{23}(z / y)=R_{23}(z / y) R_{13}(z / x) R_{12}(y / x)
$$

Yang-Baxter Equation

- The R-matrix of the model satisfies the Yang-Baxter equation

$$
R_{12}(y / x) R_{13}(z / x) R_{23}(z / y)=R_{23}(z / y) R_{13}(z / x) R_{12}(y / x)
$$

Yang-Baxter Equation

- The R-matrix of the model satisfies the Yang-Baxter equation

$$
R_{12}(y / x) R_{13}(z / x) R_{23}(z / y)=R_{23}(z / y) R_{13}(z / x) R_{12}(y / x)
$$

- Proof by explicit check.

Boundary Vertices

- We introduce boundary vertices which depend on 2 parameters

$$
1-h(x)
$$

$h(x)$

$\frac{-h(x)}{a c}$

$1+\frac{h(x)}{a c}$

Boundary Vertices

- We introduce boundary vertices which depend on 2 parameters

$$
1-h(x)
$$

$$
h(x)
$$

$$
h(x)=a c \frac{1-x^{2}}{(a-x)(c-x)}
$$

$\frac{-h(x)}{a c} \quad 1+\frac{h(x)}{a c}$

Boundary Vertices

- We introduce boundary vertices which depend on 2 parameters

$$
1-h(x)
$$

$$
h(x)
$$

$$
\frac{-h(x)}{a c} \quad 1+\frac{h(x)}{a c}
$$

- $h(x)=a c \frac{1-x^{2}}{(a-x)(c-x)}$
- These weights are also stochastic.

Reflection Equation

- The boundary weights form the entries of a stochastic K-matrix which satisfies the reflection equation

$$
R_{21}\left(\frac{x}{y}\right) K_{1}(x) R_{12}(x y) K_{2}(y)=K_{2}(y) R_{21}(x y) K_{1}(x) R_{12}\left(\frac{x}{y}\right) .
$$

Reflection Equation

- The boundary weights form the entries of a stochastic K-matrix which satisfies the reflection equation

$$
R_{21}\left(\frac{x}{y}\right) K_{1}(x) R_{12}(x y) K_{2}(y)=K_{2}(y) R_{21}(x y) K_{1}(x) R_{12}\left(\frac{x}{y}\right) .
$$

- Represented graphically

Symmetric Function

- We define the partition function indexed by configurations μ, ν

Symmetric Function

- We define the partition function indexed by configurations μ, ν

- This is a three-parameter symmetric function, with q, a, c.

Symmetric Function

- We define the partition function indexed by configurations μ, ν

- This is a three-parameter symmetric function, with q, a, c.

Proposition

The function $G_{\nu / \mu}$ is a symmetric function in the x-alphabet.

Symmetric Function

■ We define the partition function indexed by configurations μ, ν

- This is a three-parameter symmetric function, with q, a, c.

Proposition

The function $G_{\nu / \mu}$ is a symmetric function in the x-alphabet.
$■$ It is sufficient to show that $G_{\nu / \mu}\left(x_{1}, x_{2}\right)=G_{\nu / \mu}\left(x_{2}, x_{1}\right)$.

- When the bottom state is empty the partition function is given by the simplified diagram

$=$

Evaluation

- When the bottom state is empty the partition function is given by the simplified diagram

- Diagrammatic proof by Yang-Baxter application.

Triangular Partition Function

- We define the partition function

Triangular Partition Function

- We define the partition function
- This is a non-trivial partition function due to the generic boundary parameters.

Triangular Partition Function

- We define the partition function

- This is a non-trivial partition function due to the generic boundary parameters.

Theorem

When both top and bottom configurations are empty

$$
G_{\emptyset / \emptyset}\left(x_{1}, \ldots, x_{L}\right)=Z\left(x_{1}, \ldots, x_{L}\right) .
$$

Pfaffian formula

Theorem

The triangular partition function admits a Pfaffian formula

$$
Z_{L}\left(x_{1}, \ldots, x_{L}\right)=\prod_{1 \leq i<j \leq L} \frac{1-x_{i} x_{j}}{x_{i}-x_{j}} \cdot \operatorname{Pf}\left(\frac{x_{i}-x_{j}}{1-x_{i} x_{j}} Q\left(x_{i}, x_{j}\right)\right)_{1 \leq i, j \leq L}
$$

where

$$
Q\left(x_{i}, x_{j}\right)=\left(1-h\left(x_{i}\right)\right)\left(1-h\left(x_{j}\right)\right)-\frac{h\left(x_{i}\right) h\left(x_{j}\right)}{a c} \frac{(1-q) x_{i} x_{j}}{1-q x_{i} x_{j}} .
$$

Pfaffian formula

Theorem

The triangular partition function admits a Pfaffian formula

$$
Z_{L}\left(x_{1}, \ldots, x_{L}\right)=\prod_{1 \leq i<j \leq L} \frac{1-x_{i} x_{j}}{x_{i}-x_{j}} \cdot \operatorname{Pf}\left(\frac{x_{i}-x_{j}}{1-x_{i} x_{j}} Q\left(x_{i}, x_{j}\right)\right)_{1 \leq i, j \leq L}
$$

where

$$
Q\left(x_{i}, x_{j}\right)=\left(1-h\left(x_{i}\right)\right)\left(1-h\left(x_{j}\right)\right)-\frac{h\left(x_{i}\right) h\left(x_{j}\right)}{a c} \frac{(1-q) x_{i} x_{j}}{1-q x_{i} x_{j}} .
$$

■ Presented first by Behrend-Fischer-Koutschan in 2023.

Pfaffian formula

Theorem

The triangular partition function admits a Pfaffian formula

$$
Z_{L}\left(x_{1}, \ldots, x_{L}\right)=\prod_{1 \leq i<j \leq L} \frac{1-x_{i} x_{j}}{x_{i}-x_{j}} \cdot \operatorname{Pf}\left(\frac{x_{i}-x_{j}}{1-x_{i} x_{j}} Q\left(x_{i}, x_{j}\right)\right)_{1 \leq i, j \leq L}
$$

where

$$
Q\left(x_{i}, x_{j}\right)=\left(1-h\left(x_{i}\right)\right)\left(1-h\left(x_{j}\right)\right)-\frac{h\left(x_{i}\right) h\left(x_{j}\right)}{a c} \frac{(1-q) x_{i} x_{j}}{1-q x_{i} x_{j}} .
$$

■ Presented first by Behrend-Fischer-Koutschan in 2023.

- The triangular partition function obeys certain recursion relations.

Pfaffian formula

Theorem

The triangular partition function admits a Pfaffian formula

$$
Z_{L}\left(x_{1}, \ldots, x_{L}\right)=\prod_{1 \leq i<j \leq L} \frac{1-x_{i} x_{j}}{x_{i}-x_{j}} \cdot \operatorname{Pf}\left(\frac{x_{i}-x_{j}}{1-x_{i} x_{j}} Q\left(x_{i}, x_{j}\right)\right)_{1 \leq i, j \leq L}
$$

where

$$
Q\left(x_{i}, x_{j}\right)=\left(1-h\left(x_{i}\right)\right)\left(1-h\left(x_{j}\right)\right)-\frac{h\left(x_{i}\right) h\left(x_{j}\right)}{a c} \frac{(1-q) x_{i} x_{j}}{1-q x_{i} x_{j}} .
$$

- Presented first by Behrend-Fischer-Koutschan in 2023.
- The triangular partition function obeys certain recursion relations.
- For example

$$
\left.Z_{L}\left(x_{1}, \ldots, x_{L-2}, x_{L-1}, x_{L}\right)\right|_{x_{L}=1 / x_{L-1}}=Z_{L-2}\left(x_{1} \ldots, x_{L-2}\right)
$$

Pfaffian formula

Theorem

The triangular partition function admits a Pfaffian formula

$$
Z_{L}\left(x_{1}, \ldots, x_{L}\right)=\prod_{1 \leq i<j \leq L} \frac{1-x_{i} x_{j}}{x_{i}-x_{j}} \cdot \operatorname{Pf}\left(\frac{x_{i}-x_{j}}{1-x_{i} x_{j}} Q\left(x_{i}, x_{j}\right)\right)_{1 \leq i, j \leq L}
$$

where

$$
Q\left(x_{i}, x_{j}\right)=\left(1-h\left(x_{i}\right)\right)\left(1-h\left(x_{j}\right)\right)-\frac{h\left(x_{i}\right) h\left(x_{j}\right)}{a c} \frac{(1-q) x_{i} x_{j}}{1-q x_{i} x_{j}} .
$$

- Presented first by Behrend-Fischer-Koutschan in 2023.
- The triangular partition function obeys certain recursion relations.
- For example

$$
\left.Z_{L}\left(x_{1}, \ldots, x_{L-2}, x_{L-1}, x_{L}\right)\right|_{x_{L}=1 / x_{L-1}}=Z_{L-2}\left(x_{1} \ldots, x_{L-2}\right)
$$

- These recursion relations completely determine Z_{L}.

Pfaffian formula

Theorem

The triangular partition function admits a Pfaffian formula

$$
Z_{L}\left(x_{1}, \ldots, x_{L}\right)=\prod_{1 \leq i<j \leq L} \frac{1-x_{i} x_{j}}{x_{i}-x_{j}} \cdot \operatorname{Pf}\left(\frac{x_{i}-x_{j}}{1-x_{i} x_{j}} Q\left(x_{i}, x_{j}\right)\right)_{1 \leq i, j \leq L}
$$

where

$$
Q\left(x_{i}, x_{j}\right)=\left(1-h\left(x_{i}\right)\right)\left(1-h\left(x_{j}\right)\right)-\frac{h\left(x_{i}\right) h\left(x_{j}\right)}{a c} \frac{(1-q) x_{i} x_{j}}{1-q x_{i} x_{j}} .
$$

- Presented first by Behrend-Fischer-Koutschan in 2023.
- The triangular partition function obeys certain recursion relations.
- For example

$$
\left.Z_{L}\left(x_{1}, \ldots, x_{L-2}, x_{L-1}, x_{L}\right)\right|_{x_{L}=1 / x_{L-1}}=Z_{L-2}\left(x_{1} \ldots, x_{L-2}\right)
$$

- These recursion relations completely determine Z_{L}.
- Shuffle product techniques are convenient to prove the Pfaffian satisfies the recursion relations.

Aside: Alternating Sign Matrices

- Scale all weights to be equal to 1 .

Aside: Alternating Sign Matrices

- Scale all weights to be equal to 1 .
- The triangular partition function will enumerate diagonally symmetric alternating sign matrices (DSASM).

Aside: Alternating Sign Matrices

- Scale all weights to be equal to 1 .
- The triangular partition function will enumerate diagonally symmetric alternating sign matrices (DSASM).
- For example

$$
\left(\begin{array}{ccccc}
0 & 1 & 0 & 0 & 0 \\
1 & -1 & 1 & 0 & 0 \\
0 & 0 & 0 & 1 & 0 \\
0 & 1 & 0 & -1 & 1 \\
0 & 0 & 0 & 1 & 0
\end{array}\right) \longleftrightarrow \begin{aligned}
& \boldsymbol{R}^{-}-\Rightarrow \\
&
\end{aligned}
$$

Aside: Alternating Sign Matrices

- Scale all weights to be equal to 1 .
- The triangular partition function will enumerate diagonally symmetric alternating sign matrices (DSASM).
- For example

$$
\left(\begin{array}{ccccc}
0 & 1 & 0 & 0 & 0 \\
1 & -1 & 1 & 0 & 0 \\
0 & 0 & 0 & 1 & 0 \\
0 & 1 & 0 & -1 & 1 \\
0 & 0 & 0 & 1 & 0
\end{array}\right) \longleftrightarrow \begin{aligned}
& \text { \& }
\end{aligned} \begin{aligned}
& \boldsymbol{\ell}=- \\
&
\end{aligned}
$$

- These numbers are

$$
D_{n}=1,2,5,16,67,368, \cdots
$$

Aside: Alternating Sign Matrices

- Scale all weights to be equal to 1 .
- The triangular partition function will enumerate diagonally symmetric alternating sign matrices (DSASM).
- For example

$$
\left.\left(\begin{array}{ccccc}
0 & 1 & 0 & 0 & 0 \\
1 & -1 & 1 & 0 & 0 \\
0 & 0 & 0 & 1 & 0 \\
0 & 1 & 0 & -1 & 1 \\
0 & 0 & 0 & 1 & 0
\end{array}\right) \longleftrightarrow \begin{array}{c}
\text { \& }
\end{array}\right)=\begin{aligned}
& \boldsymbol{q}=- \\
&
\end{aligned}
$$

- These numbers are

$$
D_{n}=1,2,5,16,67,368, \cdots
$$

■ Kuperberg's celebrated 2000 paper enumerated many symmetry classes of ASM, but did not present DSASM.

Aside: Alternating Sign Matrices

- Scale all weights to be equal to 1 .
- The triangular partition function will enumerate diagonally symmetric alternating sign matrices (DSASM).
- For example

$$
\left(\begin{array}{ccccc}
0 & 1 & 0 & 0 & 0 \\
1 & -1 & 1 & 0 & 0 \\
0 & 0 & 0 & 1 & 0 \\
0 & 1 & 0 & -1 & 1 \\
0 & 0 & 0 & 1 & 0
\end{array}\right) \longleftrightarrow \begin{gathered}
\boldsymbol{\&} \\
\\
\end{gathered}
$$

- These numbers are

$$
D_{n}=1,2,5,16,67,368, \cdots
$$

■ Kuperberg's celebrated 2000 paper enumerated many symmetry classes of ASM, but did not present DSASM.

- The enumeration was recently completed by Behrend-Fischer-Koutschan in 2023.

Integral Formula

Theorem

When the bottom configuration is empty, G has an integral formula

$$
\begin{aligned}
G_{\nu / \emptyset}\left(x_{1}, \ldots, x_{L}\right)=\oint_{\mathcal{C}} \frac{\mathrm{d} w_{1}}{2 \pi \mathrm{i}} \cdots \oint_{\mathcal{C}} & \frac{\mathrm{d} w_{n}}{2 \pi \mathrm{i}} Z_{L+n}\left(x_{1}, \ldots, x_{L}, w_{1}^{-1}, \ldots, w_{n}^{-1}\right) \\
& \prod_{i=1}^{n} f_{\nu_{i}}\left(w_{i}\right) \prod_{1 \leq i<j \leq n}\left[\frac{w_{j}-w_{i}}{q w_{j}-w_{i}} \frac{1-q w_{i} w_{j}}{1-w_{i} w_{j}}\right]
\end{aligned}
$$

The contours enclose simple poles at all points $w_{i}=x_{1}, \ldots, x_{L} . n$ is the number of non-zero entries in ν.

Integral Formula

Theorem

When the bottom configuration is empty, G has an integral formula

$$
\begin{aligned}
G_{\nu / \emptyset}\left(x_{1}, \ldots, x_{L}\right)=\oint_{\mathcal{C}} \frac{\mathrm{d} w_{1}}{2 \pi \mathrm{i}} \cdots \oint_{\mathcal{C}} & \frac{\mathrm{d} w_{n}}{2 \pi \mathrm{i}} Z_{L+n}\left(x_{1}, \ldots, x_{L}, w_{1}^{-1}, \ldots, w_{n}^{-1}\right) \\
& \prod_{i=1}^{n} f_{\nu_{i}}\left(w_{i}\right) \prod_{1 \leq i<j \leq n}\left[\frac{w_{j}-w_{i}}{q w_{j}-w_{i}} \frac{1-q w_{i} w_{j}}{1-w_{i} w_{j}}\right]
\end{aligned}
$$

The contours enclose simple poles at all points $w_{i}=x_{1}, \ldots, x_{L} . n$ is the number of non-zero entries in ν.

■ Recursive proof over the entries in ν.

ASEP limit

- Consider the special value $x_{i}=1-(1-q) \epsilon$.

ASEP limit

- Consider the special value $x_{i}=1-(1-q) \epsilon$.
- Bulk weights become

ASEP limit

- Consider the special value $x_{i}=1-(1-q) \epsilon$.
- Bulk weights become

- Boundary weights become

$$
1-2 \alpha \epsilon+O\left(\epsilon^{2}\right)
$$

$$
2 \alpha \epsilon+O\left(\epsilon^{2}\right)
$$

$$
2 \gamma \epsilon+O\left(\epsilon^{2}\right)
$$

$$
1-2 \gamma \epsilon+O\left(\epsilon^{2}\right)
$$

ASEP dynamics

- We can recover the ASEP dynamics from the function G.

ASEP dynamics

- We can recover the ASEP dynamics from the function G.

Proposition

$$
\mathbb{P}_{t}(\mu \rightarrow \nu)=\left.\lim _{\epsilon \rightarrow 0} G_{\nu / \mu}\left(x_{1}, \ldots, x_{L}\right)\right|_{x_{i}=1-(1-q) \epsilon, L=t /(2 \epsilon)}
$$

ASEP dynamics

- We can recover the ASEP dynamics from the function G.

Proposition

$$
\mathbb{P}_{t}(\mu \rightarrow \nu)=\left.\lim _{\epsilon \rightarrow 0} G_{\nu / \mu}\left(x_{1}, \ldots, x_{L}\right)\right|_{x_{i}=1-(1-q) \epsilon, L=t /(2 \epsilon)}
$$

- This can be computed for

ASEP dynamics

- We can recover the ASEP dynamics from the function G.

Proposition

$$
\mathbb{P}_{t}(\mu \rightarrow \nu)=\left.\lim _{\epsilon \rightarrow 0} G_{\nu / \mu}\left(x_{1}, \ldots, x_{L}\right)\right|_{x_{i}=1-(1-q) \epsilon, L=t /(2 \epsilon)}
$$

- This can be computed for
- empty initial state

ASEP dynamics

- We can recover the ASEP dynamics from the function G.

Proposition

$$
\mathbb{P}_{t}(\mu \rightarrow \nu)=\left.\lim _{\epsilon \rightarrow 0} G_{\nu / \mu}\left(x_{1}, \ldots, x_{L}\right)\right|_{x_{i}=1-(1-q) \epsilon, L=t /(2 \epsilon)}
$$

- This can be computed for
- empty initial state
- particle injection only $(\gamma=0)$

ASEP dynamics

■ We can recover the ASEP dynamics from the function G.

Proposition

$$
\mathbb{P}_{t}(\mu \rightarrow \nu)=\left.\lim _{\epsilon \rightarrow 0} G_{\nu / \mu}\left(x_{1}, \ldots, x_{L}\right)\right|_{x_{i}=1-(1-q) \epsilon, L=t /(2 \epsilon)}
$$

■ This can be computed for

- empty initial state
- particle injection only $(\gamma=0)$

Theorem

This transition probability is

$$
\begin{aligned}
& \mathbb{P}_{t}(\emptyset \rightarrow \nu)=\alpha^{n} \mathrm{e}^{-\alpha t} \oint_{\mathcal{C}} \frac{\mathrm{d} w_{1}}{2 \pi \mathrm{i} w_{1}} \cdots \oint_{\mathcal{C}} \frac{\mathrm{d} w_{n}}{2 \pi \mathrm{i} w_{n}} \prod_{1 \leq i<j \leq n}\left[\frac{w_{j}-w_{i}}{q w_{j}-w_{i}} \frac{1-q w_{i} w_{j}}{1-w_{i} w_{j}}\right] \\
\times & \prod_{i=1}^{n}\left[\frac{1-q w_{i}^{2}}{\left(q+\alpha-1-\alpha w_{i}\right)\left(1-q w_{i}\right)}\left(\frac{1-w_{i}}{1-q w_{i}}\right)^{\nu_{i}-1} \exp \left(\frac{(1-q)^{2} w_{i} t}{\left(1-w_{i}\right)\left(1-q w_{i}\right)}\right)\right]
\end{aligned}
$$

Simulations

Observables

- We wish to study observables of the open ASEP.

Observables

■ We wish to study observables of the open ASEP.

- Consider the boundary current:

Observables

■ We wish to study observables of the open ASEP.

- Consider the boundary current:

■ Recall that coordinates are indexed by $\nu=\left(\nu_{1}>\cdots>\nu_{n}\right)$.

Observables

■ We wish to study observables of the open ASEP.

- Consider the boundary current:
- Recall that coordinates are indexed by $\nu=\left(\nu_{1}>\cdots>\nu_{n}\right)$.
- The probability of having n particles in the system is

$$
\mathbb{P}_{t}[n]=\sum_{\nu_{1}>\cdots>\nu_{n} \geq 1} \mathbb{P}_{t}(\emptyset \rightarrow \nu)
$$

- We wish to study observables of the open ASEP.
- Consider the boundary current:
- Recall that coordinates are indexed by $\nu=\left(\nu_{1}>\cdots>\nu_{n}\right)$.
- The probability of having n particles in the system is

$$
\mathbb{P}_{t}[n]=\sum_{\nu_{1}>\cdots>\nu_{n} \geq 1} \mathbb{P}_{t}(\emptyset \rightarrow \nu)
$$

- Related to the distribution of a height function of a random surface at the boundary.
- We wish to study observables of the open ASEP.
- Consider the boundary current:
- Recall that coordinates are indexed by $\nu=\left(\nu_{1}>\cdots>\nu_{n}\right)$.
- The probability of having n particles in the system is

$$
\mathbb{P}_{t}[n]=\sum_{\nu_{1}>\cdots>\nu_{n} \geq 1} \mathbb{P}_{t}(\emptyset \rightarrow \nu) .
$$

- Related to the distribution of a height function of a random surface at the boundary.
- Expect to observe non-Gaussian fluctuations typical of the KPZ universality class.
- We wish to study observables of the open ASEP.
- Consider the boundary current:
- Recall that coordinates are indexed by $\nu=\left(\nu_{1}>\cdots>\nu_{n}\right)$.
- The probability of having n particles in the system is

$$
\mathbb{P}_{t}[n]=\sum_{\nu_{1}>\cdots>\nu_{n} \geq 1} \mathbb{P}_{t}(\emptyset \rightarrow \nu) .
$$

- Related to the distribution of a height function of a random surface at the boundary.
- Expect to observe non-Gaussian fluctuations typical of the KPZ universality class.
- This quantity is expected to obey a large deviation principle described by macroscopic fluctuation theory (MFT) at the diffusive scale with $q=1$ (SSEP).

Dual Family

- We may also define the partition function

Dual Family

- We may also define the partition function

- The dotted weights have been re-normalised so that

$$
\overbrace{\|}^{\|}=1
$$

Dual Family

- We may also define the partition function

- The dotted weights have been re-normalised so that

$$
\xrightarrow[!]{!}=1 \text {. }
$$

- $F_{\mu / \nu}$ is a symmetric function in the z-alphabet.

Cauchy Identity

Proposition

There is an exchange relation between double-row transfer matrices

Cauchy Identity

Proposition

There is an exchange relation between double-row transfer matrices

- Implies the functions G, F obey a skew-Cauchy summation identity.

Cauchy Identity

Proposition

There is an exchange relation between double-row transfer matrices

- Implies the functions G, F obey a skew-Cauchy summation identity.

Theorem

$$
\begin{aligned}
\sum_{\kappa} & G_{\kappa / \mu}\left(x_{1}, \ldots, x_{L}\right) F_{\kappa / \nu}\left(z_{1}, \ldots, z_{M}\right) \\
& =\prod_{i=1}^{M} \prod_{j=1}^{L}\left[\frac{x_{j}-q z_{i}}{x_{j}-z_{i}} \frac{1-z_{i} x_{j}}{1-q z_{i} x_{j}}\right] \sum_{\lambda} F_{\mu / \lambda}\left(z_{1}, \ldots, z_{M}\right) G_{\nu / \lambda}\left(x_{1}, \ldots, x_{L}\right),
\end{aligned}
$$

where the left is an infinite sum while the right is a finite one.

Cauchy identity as an observable

- The Cauchy identity can be interpreted naturally as an ASEP observable.

Cauchy identity as an observable

- The Cauchy identity can be interpreted naturally as an ASEP observable.

with empty bottom conditions.

Cauchy identity as an observable

- The Cauchy identity can be interpreted naturally as an ASEP observable.

with empty bottom conditions.
- This is effectively

$$
\mathbb{E}\left[F_{\nu}\right]=\Pi(x, z) \cdot G_{\nu}
$$

Pfaffian Cauchy Identity

■ A special case also yields a nice algebraic result.

Pfaffian Cauchy Identity

- A special case also yields a nice algebraic result.

Theorem

When $\mu=\nu=\emptyset$, there is a Cauchy summation identity

$$
\begin{aligned}
& \sum_{\kappa} G_{\kappa}\left(x_{1}, \ldots, x_{L}\right) F_{\kappa}\left(z_{1}, \ldots, z_{M}\right)=\prod_{i=1}^{M} h\left(z_{i}\right) \prod_{1 \leq i<j \leq L} \frac{1-x_{i} x_{j}}{x_{i}-x_{j}} \\
& \prod_{i=1}^{M} \prod_{j=1}^{L}\left[\frac{x_{j}-q z_{i}}{x_{j}-z_{i}} \frac{1-z_{i} x_{j}}{1-q z_{i} x_{j}}\right] \operatorname{Pf}\left(\frac{x_{i}-x_{j}}{1-x_{i} x_{j}} Q\left(x_{i}, x_{j}\right)\right)_{1 \leq i, j \leq L}
\end{aligned}
$$

An orthogonality conjecture

- There is an early hint of a more general theory of half-line functions.

An orthogonality conjecture

■ There is an early hint of a more general theory of half-line functions.

Conjecture

In the limit $c \rightarrow \infty(\gamma \rightarrow 0)$

$$
\oint_{\mathcal{C}} \frac{\mathrm{d} w_{1}}{2 \pi \mathrm{i}} \cdots \oint_{\mathcal{C}} \frac{\mathrm{d} w_{n}}{2 \pi \mathrm{i}} \Delta\left(w_{1}, \ldots, w_{n}\right) \prod_{i=1}^{n} \psi_{\nu_{i}}\left(w_{i}\right) F_{\kappa}\left(w_{1}, \ldots, w_{n}\right)=\delta_{\kappa, \nu}
$$

An orthogonality conjecture

- There is an early hint of a more general theory of half-line functions.

Conjecture

In the limit $c \rightarrow \infty(\gamma \rightarrow 0)$

$$
\oint_{\mathcal{C}} \frac{\mathrm{d} w_{1}}{2 \pi \mathrm{i}} \cdots \oint_{\mathcal{C}} \frac{\mathrm{d} w_{n}}{2 \pi \mathrm{i}} \Delta\left(w_{1}, \ldots, w_{n}\right) \prod_{i=1}^{n} \psi_{\nu_{i}}\left(w_{i}\right) F_{\kappa}\left(w_{1}, \ldots, w_{n}\right)=\delta_{\kappa, \nu}
$$

- This is similar to those obtained by Borodin-Petrov and Borodin-Wheeler for higher-spin models in the full-space.

An orthogonality conjecture

- There is an early hint of a more general theory of half-line functions.

Conjecture

In the limit $c \rightarrow \infty(\gamma \rightarrow 0)$

$$
\oint_{\mathcal{C}} \frac{\mathrm{d} w_{1}}{2 \pi \mathrm{i}} \cdots \oint_{\mathcal{C}} \frac{\mathrm{d} w_{n}}{2 \pi \mathrm{i}} \Delta\left(w_{1}, \ldots, w_{n}\right) \prod_{i=1}^{n} \psi_{\nu_{i}}\left(w_{i}\right) F_{\kappa}\left(w_{1}, \ldots, w_{n}\right)=\delta_{\kappa, \nu}
$$

- This is similar to those obtained by Borodin-Petrov and Borodin-Wheeler for higher-spin models in the full-space.
- Together with the Cauchy identity, the arbitrary initial state $G_{\nu / \mu}$ can be calculated.

An orthogonality conjecture

- There is an early hint of a more general theory of half-line functions.

Conjecture

In the limit $c \rightarrow \infty(\gamma \rightarrow 0)$

$$
\oint_{\mathcal{C}} \frac{\mathrm{d} w_{1}}{2 \pi \mathrm{i}} \cdots \oint_{\mathcal{C}} \frac{\mathrm{d} w_{n}}{2 \pi \mathrm{i}} \Delta\left(w_{1}, \ldots, w_{n}\right) \prod_{i=1}^{n} \psi_{\nu_{i}}\left(w_{i}\right) F_{\kappa}\left(w_{1}, \ldots, w_{n}\right)=\delta_{\kappa, \nu},
$$

- This is similar to those obtained by Borodin-Petrov and Borodin-Wheeler for higher-spin models in the full-space.
- Together with the Cauchy identity, the arbitrary initial state $G_{\nu / \mu}$ can be calculated.
- Proof to come.

ASEP with initial conditions

- Using the orthogonality conjecture and Cauchy identity we can access initial conditions of the ASEP.

ASEP with initial conditions

■ Using the orthogonality conjecture and Cauchy identity we can access initial conditions of the ASEP.

Conjecture

The open ASEP with $\gamma=0$ has the transition probability:

$$
\left.\begin{array}{r}
\mathbb{P}_{t}(\mu \rightarrow \nu)=\alpha^{n} \mathrm{e}^{-\alpha t} \oint_{\mathcal{C}} \frac{\mathrm{d} w_{1}}{2 \pi \mathrm{i} w_{1}} \cdots \oint_{\mathcal{C}} \frac{\mathrm{d} w_{n}}{2 \pi \mathrm{i} w_{n}} \prod_{1 \leq i<j \leq n}
\end{array} \quad\left[\frac{w_{j}-w_{i}}{q w_{j}-w_{i}} \frac{1-q w_{i} w_{j}}{1-w_{i} w_{j}}\right]\right] \text { } \begin{array}{r}
\prod_{i=1}^{n}\left[\frac{1-q w_{i}^{2}}{\left(q+\alpha-1-\alpha w_{i}\right)\left(1-q w_{i}\right)}\left(\frac{1-w_{i}}{1-q w_{i}}\right)^{\nu_{i}-1} \exp \left(\frac{(1-q)^{2} w_{i} t}{\left(1-w_{i}\right)\left(1-q w_{i}\right)}\right)\right] \\
\times \lim _{c \rightarrow \infty} F_{\mu}\left(w_{1}, \ldots, w_{n}\right)
\end{array}
$$

ASEP with initial conditions

■ Using the orthogonality conjecture and Cauchy identity we can access initial conditions of the ASEP.

Conjecture

The open ASEP with $\gamma=0$ has the transition probability:

$$
\left.\begin{array}{r}
\mathbb{P}_{t}(\mu \rightarrow \nu)=\alpha^{n} \mathrm{e}^{-\alpha t} \oint_{\mathcal{C}} \frac{\mathrm{d} w_{1}}{2 \pi \mathrm{i} w_{1}} \cdots \oint_{\mathcal{C}} \frac{\mathrm{d} w_{n}}{2 \pi \mathrm{i} w_{n}} \prod_{1 \leq i<j \leq n}
\end{array} \quad\left[\frac{w_{j}-w_{i}}{q w_{j}-w_{i}} \frac{1-q w_{i} w_{j}}{1-w_{i} w_{j}}\right]\right] \text { } \begin{array}{r}
n \prod_{i=1}^{n}\left[\frac{1-q w_{i}^{2}}{\left(q+\alpha-1-\alpha w_{i}\right)\left(1-q w_{i}\right)}\left(\frac{1-w_{i}}{1-q w_{i}}\right)^{\nu_{i}-1} \exp \left(\frac{(1-q)^{2} w_{i} t}{\left(1-w_{i}\right)\left(1-q w_{i}\right)}\right)\right] \\
\times \lim _{c \rightarrow \infty} F_{\mu}\left(w_{1}, \ldots, w_{n}\right)
\end{array}
$$

- This is an alternative to a very difficult Bethe ansatz calculation.

ASEP with initial conditions

- Using the orthogonality conjecture and Cauchy identity we can access initial conditions of the ASEP.

Conjecture

The open ASEP with $\gamma=0$ has the transition probability:

$$
\left.\begin{array}{r}
\mathbb{P}_{t}(\mu \rightarrow \nu)=\alpha^{n} \mathrm{e}^{-\alpha t} \oint_{\mathcal{C}} \frac{\mathrm{d} w_{1}}{2 \pi \mathrm{i} w_{1}} \cdots \oint_{\mathcal{C}} \frac{\mathrm{d} w_{n}}{2 \pi \mathrm{i} w_{n}} \prod_{1 \leq i<j \leq n}
\end{array} \quad\left[\frac{w_{j}-w_{i}}{q w_{j}-w_{i}} \frac{1-q w_{i} w_{j}}{1-w_{i} w_{j}}\right]\right] \text { } \begin{array}{r}
n \prod_{i=1}^{n}\left[\frac{1-q w_{i}^{2}}{\left(q+\alpha-1-\alpha w_{i}\right)\left(1-q w_{i}\right)}\left(\frac{1-w_{i}}{1-q w_{i}}\right)^{\nu_{i}-1} \exp \left(\frac{(1-q)^{2} w_{i} t}{\left(1-w_{i}\right)\left(1-q w_{i}\right)}\right)\right] \\
\times \lim _{c \rightarrow \infty} F_{\mu}\left(w_{1}, \ldots, w_{n}\right)
\end{array}
$$

- This is an alternative to a very difficult Bethe ansatz calculation.
- Generalises earlier work of Tracy-Widom from 2013 on the closed system ($\alpha=0$).

ASEP with initial conditions

- Using the orthogonality conjecture and Cauchy identity we can access initial conditions of the ASEP.

Conjecture

The open ASEP with $\gamma=0$ has the transition probability:

$$
\left.\begin{array}{r}
\mathbb{P}_{t}(\mu \rightarrow \nu)=\alpha^{n} \mathrm{e}^{-\alpha t} \oint_{\mathcal{C}} \frac{\mathrm{d} w_{1}}{2 \pi \mathrm{i} w_{1}} \cdots \oint_{\mathcal{C}} \frac{\mathrm{d} w_{n}}{2 \pi \mathrm{i} w_{n}} \prod_{1 \leq i<j \leq n}
\end{array} \quad\left[\frac{w_{j}-w_{i}}{q w_{j}-w_{i}} \frac{1-q w_{i} w_{j}}{1-w_{i} w_{j}}\right]\right] \text { } \begin{array}{r}
\prod_{i=1}^{n}\left[\frac{1-q w_{i}^{2}}{\left(q+\alpha-1-\alpha w_{i}\right)\left(1-q w_{i}\right)}\left(\frac{1-w_{i}}{1-q w_{i}}\right)^{\nu_{i}-1} \exp \left(\frac{(1-q)^{2} w_{i} t}{\left(1-w_{i}\right)\left(1-q w_{i}\right)}\right)\right] \\
\times \lim _{c \rightarrow \infty} F_{\mu}\left(w_{1}, \ldots, w_{n}\right)
\end{array}
$$

- This is an alternative to a very difficult Bethe ansatz calculation.
- Generalises earlier work of Tracy-Widom from 2013 on the closed system ($\alpha=0$).
- Observables can be extended to more general initial conditions.

■ Extend to higher-rank and fused generalisations.

Future work

■ Extend to higher-rank and fused generalisations.

■ Dual family F is related to the $B C_{n}$-symmetric Hall-Littlewood polynomials through fusion.

■ Extend to higher-rank and fused generalisations.

■ Dual family F is related to the $B C_{n}$-symmetric Hall-Littlewood polynomials through fusion.

- Proof of the orthogonality conjecture will allow a more thorough study of G, F.
- Extend to higher-rank and fused generalisations.
- Dual family F is related to the $B C_{n}$-symmetric Hall-Littlewood polynomials through fusion.
- Proof of the orthogonality conjecture will allow a more thorough study of G, F.
- Investigate scaling limits:
- Extend to higher-rank and fused generalisations.
- Dual family F is related to the $B C_{n}$-symmetric Hall-Littlewood polynomials through fusion.
- Proof of the orthogonality conjecture will allow a more thorough study of G, F.
- Investigate scaling limits:
- KPZ scale.
- Extend to higher-rank and fused generalisations.
- Dual family F is related to the $B C_{n}$-symmetric Hall-Littlewood polynomials through fusion.
- Proof of the orthogonality conjecture will allow a more thorough study of G, F.
- Investigate scaling limits:
- KPZ scale.
- Diffusive scale (MFT).

