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Outline of the talk

Correlation functions of the XX(Z) quantum spin chain

I Equilibrium examples for XX
• longitudinal correlations
• high-T asymptotics of the transverse correlation functions at any fixed

space-time point

I Quantum spin chains in cold atom experiments
• quantum control, search for new forms of quantum matter...
• stationary states with long range order

I Non-equilibrium example for XX – chiral basis and spin-helix decay
• Baxter’s work on XYZ: use of chiral basis / spin helices unavoidable
• for XX eigenstates: Sz basis possible, but here chiral basis better

I Summary



Prime example of an integrable spin chain Hamiltonian

I The XXZ model
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J > 0, h ∈ R, ∆ = cos(γ) ∈ R
I Mission: calculate
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explicitly for all values of r , t , T and h!

I State of the art: Finite temperature dynamical correlation functions of
Yang-Baxter integrable lattice models are largely unknown. Partial exception: the
XX model, HXX = HN(0)

I Longitudinal two-point functions of the XX model [NIEMEIJER 67, GKKKS 17]
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where ε(p) = h−4J cos(p)



Longitudinal correlation functions of the XX model

The simple expression for the longitudinal correlations functions can be analyzed
numerically and asymptotically by means of the saddle point method
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Real part of the connected longitudinal two-point function of the XX chain at r = 12,
T = 1, h = 0.2 and J = 1/4 as a function of time



High-T analysis -– some history

I Implication of Niemeijer’s formula

〈σz
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z
r+1(t)〉∞ = J2

r (4Jt)

where Jr , r ∈ N is a Bessel function

I A classical result by Brandt and Jacoby 1976:
For T → ∞ the transverse auto-correlation function of the XX-chain behaves as a
Gaussian
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I What about r > 0 in the transverse case? Perk and Capel 1977 generalized this
up to next-to-nearest neighbours, where modified Bessel functions occur

An explicit example beyond Perk and Capel 1977: Göhmann, Kozlowski, Suzuki 2020
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Based on Bethe Ansatz for quantum transfer matrix, a thermal form factor series, and
the analysis of a matrix Riemann-Hilbert problem



Spin chains in cold atom experiments

FIG. 1 from [P. N. JEPSEN

ET AL. PRX 11 (2021)
041054]. Geometry of the
experiment. The initial state
is a transverse (a) or longi-
tudinal (b) spin helix where
the spin vector winds within
the Sx -Sy plane (a) or Sz -
Sx plane (b).
Deep optical lattices along
the x and y directions cre-
ate an array of independent
spin chains. The z lattice is
shallower and controls spin
dynamics along each chain
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Spin chains in cold atom experiments

FIG. 1 from [P. N. JEPSEN

ET AL. NATURE PHYS. 8
(2022) 899]. An initially spin-
polarized state in the Sx direc-
tion (c) is wound into a spin he-
lix with variable wavevector Q
using a magnetic field gradient
(black triangles). Here, we il-
lustrate a winding of Qa = π/2
(d). This state evolves under
the XXZ Heisenberg Hamilto-
nian (e). After unwinding the re-
maining spin modulation to a re-
solvable wavevector (f), the lo-
cal Sx magnetization is imaged
in situ (g) where dark blue indi-
cates spins along +Sx . Only
the Sx and Sy components of
the spin are shown in c–f.



Spin chains in cold atom experiments

FIG. 2 from [P. N. JEPSEN ET AL. NATURE PHYS. 8 (2022) 899]. Decay of
spin-helix states. a–c, The spin-helix contrast c(t) measured for ∆≈ 0 at two
different lattice depths 9ER (red) and 11ER (blue), with corresponding spin-
exchange times ~/J = 1.06 and 2.91 ms, for three wavevectors: Qa = 0
with all spins aligned (a), Qa = π/2 with neighbouring spins perpendicular
(b), which is a many-body eigenstate for ∆ = 0, and Qa = π with all spins
anti-aligned (c). The decay curves at different lattice depths collapse when
times are normalized in units of ~/J.



Spin chains in cold atom experiments

FIG. 3 from [P. N. JEPSEN ET AL. NATURE PHYS. 8 (2022) 899]. Observa-
tion of phantom helix states. The decay rate γ as a function of the wavevector
Q. Minimum / eigenstate condition in accordance with the phantom conditon

∆ = cos(Qa)

(from now on a = J = ~ = 1)



Decay of a transverse spin helix

I Fully polarized state in x-direction
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I Spin rotation around z-axis with linearly increasing angles Qn with position n
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yields spin helix state representing a helix in the xy-plane (which is
commensurate with periodic boundary conditions, if QN = 0 mod 2π.

I Transformation of local vector of spin operators according to 3d representation
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Decay of a transverse spin helix

I We are interested in the dynamics induced by the XX Hamiltonian
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Decay of a transverse spin helix

I For the XX-model H and J commute [J ,H] = 0.
I We have J |Ω0〉= 0
I We carry out the spin rotation in (1)

〈ΩQ |~σn(t)|ΩQ〉=< Ω0|eitH̃ D(Qn)~σn e−itH̃ |Ω0〉

=< Ω0|e−it sin(Q)J +it cos(Q)H D(Qn)~σn e−it cos(Q)H+it sin(Q)J |Ω0〉

=< Ω0|eit cos(Q)H D(Qn)~σn e−it cos(Q)H |Ω0〉

= D(Qn)〈Ω0|~σn(cos(Q)t)|Ω0〉 independent of n

I Dynamics of Hamiltonian is in xy plane, initial state fully polarized in x-direction
→ the y - and z-component of the order parameter in |Ω0〉 stay 0.
(Symmetry argument with spin π-rotation around x-axes leaves H, σx

n and |Ω0〉
invariant, but not σ
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The spiral is not moving but globally fading away.



Chiral multi-qubit basis

I Our starting point is the winding number operator

V =
1
4

N/2

∑
k=1

(
σ

x
2k−1σ

y
2k −σ

y
2k σ

x
2k+1

)
defined for an even number of qubits N

I The factorized state

Ψ = ϕ1⊗ζ1⊗ϕ2⊗ζ2⊗ . . .⊗ϕN/2⊗ζN/2

is an eigenstate of V provided that

〈ϕj |=
1√
2

(1,±1) , 〈ζj |=
1√
2

(1,∓i)

I At each link x |x + 1 the polarization changes by +π/2 or −π/2 in the xy-plane.
Each anticlockwise or clockwise rotation by π/2 adds +1 or −1 to the
eigenvalue of 4V . Thus, 4V |Ψ〉= (N−2M)|Ψ〉, where M is the number of
‘clockwise’ rotations = kinks. Ψ is characterized by the kink positions
1≤ x1 < .. . < xM ≤ N and by the polarization κ =± of the first qubit ϕ1. We
denote this state by i∑k xk |κ;x〉 where x = (x1, . . . ,xM )



Chiral multi-qubit basis

I The set of V eigenstates{
|κ;x〉

∣∣κ =±;M admissible;1≤ x1 < x2 < · · ·< xM ≤ N
}

forms an orthonormal basis, the chiral basis. Due to periodic boundary
conditions admissible Ms are even (odd) if N/2 is even (odd)

I The chiral basis vectors are topologically non-trivial. A single kink cannot be
removed from (or added to) a periodic chain by a local operation

I σz
n creates a kink pair at neighbouring positions n−1, n in a kink-free zone. A

string of operators σz
n σz

n+1 . . .σ
z
n+k creates two kinks at distance k + 1 in a

kink-free zone
|+;1,k + 2〉= σ

z
2 σ

z
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z
k+2|+〉

Here |+〉 is a perfect spin helix with maximal winding number N/4

|+〉= | →↑←↓→↑←↓ . . .〉

I The connection between the chiral basis and the Sz eigenbasis is non-trivial

I [V ,H] = 0→ H can be diagonalized in chiral basis with fixed number of kinks.



Diagonalization of XX Hamiltonian in chiral basis

Theorem (XX chiral eigenbasis)

I The states

|µM (p)〉= ∑
1≤x1<...<xM≤N

χx(p)
{
|1;x〉− eip1N |−1;x〉
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(
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e
iπ
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)
where M is admissible and where the chiral quasi-momenta
p = (p1,p2, . . . ,pM ), satisfy either eipj N = 1 or eipj N =−1 for all pj , form an
orthonormal basis of XX eigenstates, 〈µM (p)|µM ′(p′)〉= δp,p′δM,M ′

I The corresponding energy eigenvalues are Ep = ∑
M
j=1 εj , εj = 4cos(pj )



Calculating SN in the chiral eigenbasis

I An important simplification when calculating SN(t) within the chiral basis results
from the fact that σx

1 acts diagonally on the basis vectors

σ
x
1|κ;x〉= κ|κ;x〉

for all admissible M, leading to

〈µM ′(q)|σx
1|µM (p)〉= 0 , if M 6= M ′ (∗)

I Inserting id = ∑M ∑p |µM (p)〉〈µM (p)| two times into the definition of SN(t) and
using (∗) we obtain

SN(t) = ∑
M

∑
p,q

ei(Ep−Eq)t 〈Ω0|µM (p)〉〈µM (p)|σx
1|µM (q)〉〈µM (q)|Ω0〉

I For the overlaps we find that 〈Ω0|µM (p)〉= 0 unless M = N/2 which reduces
the sum over M to a single term

I The remaing overlaps and matrix elements are easily calculated in the chiral
eigenbasis



Calculating SN in the chiral eigenbasis

I From now on fix M = N/2 and let B± =
{

p ∈ [−π,π)
∣∣eipN =±1

}
I Then

〈Ω0|µM (p)〉=
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M
F(p,q) , Fnm(p,q) =

1

ei(pm−qn)−1

the latter being valid if one of the vectors p, q belongs to B+, the other one to
B−. Otherwise the matrix element vanishes

I Note that the determinants are of Vandermonde and Cauchy type as is typical for
free Fermion systems



Determinant representation for SN

Theorem (Finite-N determinant representation)
For every even N we can represent the function SN as

SN(t) =
ΦN(t) + ΦN(−t)

2
where ΦN(t) = det

m,n=1,...,M
φ

(N)
m,n(t)

with

φ
(N)
m,n(t) =

1
N2 ∑

p∈B+

∑
q∈B−
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The thermodynamic limit

Theorem (Infinite determinant representation in thermodynamic limit)
For all m,n ∈ Z define

Km,n(t) =
t
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)
where the Jk are Bessel functions. For all m,n ∈ Z+ let

A±m,n(t) = δm,n + Km,n(t)±Km,1−n(t)

Then
S(t) = lim

N→∞
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Numerical efficiency

I The above semi-infinite determinants determine S(t) for all values of t

I Infinite determinants may define functions in much the same way as infinite sums
or products

I The infinite determinant formula is numerically extremely efficient. E.g.

S(t = 50) = 7.64483×10−56 + 7.24454×10−71× i

This was obtained from a truncation of the determinant to size r = 120. If r is
further increased, the values do not change anymore. Since we know that the
imaginary part is zero, the relative size of real and imaginary parts gives an
estimate of the numerical accuray of the result

I Truncating the determinant at size r = 4 reproduces S(t) with an absolute
accuray of 10−5 for t < 2. The larger t the larger the size of the determinant has
to be taken. t = 2 seems to be beyond the experimentally accessed times



Depicting the universal amplitude
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(left panel) and in logarithmic scale (right panel)

I Left Panel: Blue line is to be compared with Fig. 2a in [P. N. JEPSEN ET AL.
NATURE PHYS. 8 (2022) 899]

I Right Panel: SN(t) shows exponential decay for large times, given by the black
dashed line. Coloured dashed curves show S(t) with determinant size truncated
to r = [N/4]. Curves with the same colour code correspond to the same N.
Deviations from the straight line at large t are due to finite size effects



Long-time asymptotic behaviour and decay rate

I Our numerics suggests a simple
large-t asymptotics for S(t)

S(t)∼ 1.5117e−
8
π

t

I From this asymptotics and the
self-similarity we readily get the
spin-helix state decay rate

γ(Q) =
8
π
|cos(Q)|

comparable with the experimental
result
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TURE PHYS. 8 (2022) 899]



Summary

1. We have presented a view on the equilibrium and non-equilibrium dynamics of
the XX chain

2. Our non-equilibrium example was the temporal decay of a transverse spin helix
of wave vector Q. It was inspired by a recent cold atom experiment performed by
the Ketterle group at MIT

3. The spin-helix decay is spatially uniform. The decay amplitude has a scaling
form with a universal amplitude SN(t)

4. We used the chiral basis to derive determinant representations for SN and its
thermodynamic limit S

5. The determinant representation of the latter is numerically highly efficient and
allowed us (using also some analytic arguments that were not presented) to
guess the long-time asymptotics of the function

6. Our results compare reasonably well with the experiment
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