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Heisenberg Model

Partially anisotropic Heisenberg model

H =
L

∑
j=1

[Sx
jS

x
j+1 +S

y
jS

y
j+1 +∆Sz

jS
z
j+1] , ∆ = cosγ

three phases for ground state:

∆ <−1 (ferromagnetic), −1 < ∆ <+1 (critical), +1 < ∆ (antiferromagnetic).

It is integrable/exactly solvable:

infinitely many conserved currents, Yang-Baxter equation for R-matrix of the 6-vertex model

Transfer matrix T (u) is family of commuting operators [T (u1),T (u2)] = 0

H =
d

du
logT (u)|u=0
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Properties

• Conformal spectrum (free massless compact boson)

E(L) = Le0 +
2π

L
vF

(

− 1

12
+

1− γ/π

2
m2 +

1

2(1− γ/π)
(w−φ/π)2 +N

)

, vF = π
sin(γ)

γ

with integers m (magnetization), w (momentum), and angle φ (in case of twisted boundary

conditions).

• The lattice model satisfies the Temperley-Lieb Algebra

The spin-1/2 XXZ chain (alias 6-vertex model) is a faithful representation. The same eigenvalues

are found in other representations of the TL-algebra

• self-dual Potts model

• loop models, O(n) models, critical bond percolation (2d)

• restricted solid-on-solid models

• higher spin quantum chains, sl(2|1) supersymmetric spin chain...

Mapping can be used to solve these models. Attention:

“new TL-model” with periodic b.c. ⇔ spin-1/2 XXZ chain with twist
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The (alternating) Heisenberg Chain with NN and NNN interactions

We use the construction

Transfer matrix T (u) is family of commuting operators [T (u1),T (u2)] = 0

H =
d

du
logT (u)|u=0

With broken translational invariance, except for α = π/2 for which

H =
2L

∑
j=1

[

−1

2
~σ j~σ j+2 + sin2 γσz

jσ
z
j+1 −

i

2
sinγ

(

σz
j−1 −σz

j+2

)(

σx
jσ

x
j+1 +σ

y
jσ

y
j+1

)]

Jacobsen, Saleur 2006, Ikhlef, Jacobsen, Saleur 2008+12 (non-compact continuum limit, log-corrections)

Frahm, Martins 2011+12 (density functions, numerical solns.)

Candu, Ikhlef 2013, Frahm, Seel 2013 (non-linear integral eqs.)
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The problem

Conformal spectrum

E(L) = Le0 +
2π

L
vF

(

−1

6
+

γ

2π
m2 +

π

2γ
w2 +

2γ

π−2γ
s2 +N

)

, vF = sin(2γ)
π

π−2γ

with “usual” integers m (magnetization), w (momentum) and

“continuous” s, growing with reallocating n BA-roots from one line to the other (see later).

s≃ πn

2logL
, large L, n= 0,1,2, ... (Wiener-Hopf technique by IJS 12)

• “non-compact continuum limit”, continuous component in the spectrum of conformal

dimensions

• Ikhlef, Jacobsen, Saleur 12: Euclidean black hole NLSM (Maldacena, Ooguri (2001), Maldacena,

Ooguri, Son (2001), Hanany, Prezas, Troost (2002)) is the CFT governing the scaling limit

• Fantastically accurate quantization condition for s valid even for quite finite systems by

Bazhanov, Kotousov, Koval, Lukyanov 2019, 20, 21, ⇒ SL(2,R)/U(1) NLSM on Euclidean →
Lorentzian black hole.

They use, among other things, the ODE/IQFT correspondence in the scaling limit.
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Bethe ansatz equations / T Q relations

Λ(z) = Φ(z− iγ)
q(z+2iγ)

q(z)
+Φ(z+ iγ)

q(z−2iγ)

q(z)
, (T q = Φq+Φq)

Φ(z) = sinhL z, q(z) = ∏
j

sinh 1
2 (z− z j)

Parameterization with 2πi-periodicity, 2 independent analyticity regions. For ground state
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The usual procedure... and beyond

The Bethe ansatz equations (e.g. from analyticity condition for Λ(z))

Φ(zi + iγ)

Φ(zi − iγ)
=−q(zi +2iγ)

q(zi −2iγ)
explicitly

(
sinh(zi + iγ)

sinh(zi − iγ)

)L

=−∏
j

sinh 1
2 (zi − z j +2iγ)

sinh 1
2 (zi − z j −2iγ)

Or more compactly

a(z) :=
Φ(z+ iγ)q(z−2iγ)

Φ(z− iγ)q(z+2iγ)
, BA eqns a(zi) =−1

We use this function off the distribution lines like in AK, Batchelor 90; AK, Batchelor, Pearce 91; AK 92;

Destri, de Vega 92, 95; J. Suzuki 98.
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The four specializations of a(z)
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The “auxiliary functions” ... destined to satisfy integral equations

“It is convenient to consider” (Ak = 1+ak factorize thanks to the T Q relation)

a1(x) :=
1

a(x+ iγ)
=

Φ(x)

Φ(x+2iγ)

q(x+3iγ)

q(x− iγ)

a2(x) := a(x+ iπ− iγ) =
Φ(x)

Φ(x−2iγ)

q(x+ iπ−3iγ)

q(x+ iπ+ iγ)

a3(x) := a(x− iγ) =
Φ(x)

Φ(x−2iγ)

q(x−3iγ)

q(x+ iγ)

a4(x) :=
1

a(x+ iπ+ iγ)
=

Φ(x)

Φ(x+2iγ)

q(x+ iπ+3iγ)

q(x+ iπ− iγ)

A1(x) := 1+a1(x) =
1

Φ(x+2iγ)

q(x+ iγ)

q(x− iγ)
Λ(x+ iγ)

A2(x) := 1+a2(x) =
1

Φ(x−2iγ)

q(x+ iπ− iγ)

q(x+ iπ+ iγ)
Λ(x+ iπ− iγ)

A3(x) := 1+a3(x) =
1

Φ(x−2iγ)

q(x− iγ)

q(x+ iγ)
Λ(x− iγ)

A4(x) := 1+a4(x) =
1

Φ(x+2iγ)

q(x+ iπ+ iγ)

q(x+ iπ− iγ)
Λ(x+ iπ+ iγ)
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Analyzing multiplicative functional equations by Fourier transform

• We have 2 analytic functions q(z),Λ(z) each with 2 horizontal strips with convergent Fourier

representation for its logarithm: makes 4 “independent functions”

• We defined additional 8 functions: a1(x), ...,a4(x),A1(x), ...,A4(x).

• We set up 8 multiplicative functional equations, like (indices of q, Λ refer to analyticity strips)

a1(x) =
Φ(x)

Φ(x+2iγ)

qII(x+3iγ)

qI(x− iγ)
, A2(x) =

1

Φ(x−2iγ)

qII(x+ iπ− iγ)

qII(x+ iπ+ iγ)
ΛII(x+ iπ− iγ)

• Solve a1, ...,a4,qI ,q2,ΛI ,ΛII in terms of A1, ...,A4.

How do we do with this? Equations like

f (x) = g(x+ iα)/h(x+ iβ)

after log-derivative and Fourier transform turn into

FT
[
(log f )′

]

k
= e−αk FT

[
(logg)′

]

k
− e−βk FT

[
(logh)′

]

k

The 8 multiplicative functional equations turn into 8 linear equations for the Fourier transforms...
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The non-linear integral equations, version I – singular kernel










loga1

loga2

loga3

loga4










= d +K ∗










logA1

logA2

logA3

logA4










, d(x) = L log th( 1
2 gx) ·










1

1

1

1










, g :=
π

π−2γ

The kernel in Fourier transform notation

K =




σ1 σ2

σ†
2 σT

1



 († interchanges diagonal elements)

σ1 =
cosh((π−3γ)k)

2sinh(γk)sinh((π−2γ)k)




−1 e(π−2γ)k

e(2γ−π)k −1





σ2 =
cosh(γk)

2sinh(γk)sinh((π−2γ)k)




−e(π−2γ)k 1

1 −e(2γ−π)k





which is highly singular: in real space with asymptotics Ki, j(x)≃ |x|.
Non-linear integral equations – p.12/33



The eigenvalue

For x (slightly below the real axis) the eigenvalue splits into pure bulk and finite size part

log[Λ(x− iγ)Λ(x+ i(π− γ))] = L ·λ(x)+κ∗ [logA1 + logA2 + logA3 + logA4]

κ(x) =−i
g

sinh(gx)
, g =

π

π−2γ

Energy expression from derivative at x = 0

E = sin(2γ)
d

dx
log[Λ(x− iγ)Λ(x+ i(π− γ))]

= Le0 − sin(2γ)

∫ ∞

−∞
dx

g2 coshgx

(sinhgx)2
[logA1(x)+ logA2(x)+ logA3(x)+ logA4(x)]

where g = π
π−2γ .

Quasi-momentum

Q = ig

∫ ∞

−∞
dx cothgx [logA1(x)− logA2(x)+ logA3(x)− logA4(x)]
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The ground-state solution and 1st excited state

True ground state solution: logai −d and logAi = log(1+ai) for L = 109

-20 -10 0 10 20

-0,01

0

0,01

-20 -10 0 10 20

0

0,2

0,4

0,6

Reallocating 1 BA root from one line to the other (n =±1) has solution

-20 -10 0 10 20

-6

-4

-2

0

2

4

6

-20 -10 0 10 20

0

0,2

0,4

0,6

with huge changes in the logai functions, but only little in the logAi.
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Why has the kernel to be singular and what are the alternatives I

...with huge changes in the logai functions, but only little in the logAi.

logA1 for ground state and excited state

-20 -10 0 10 20

0

0,2

0,4

0,6
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The optimal arrangement of the NLIE, version II – regular kernel

Super-great manipulation a = (logai),A = (log(1+ai)

a = d +K ∗A

2(a−d) = K ∗2A = K ∗ (2A− (a−d))+K ∗ (a−d)

(2−K)∗ (a−d) = K ∗ (2A− (a−d))

a = d +Kr ∗ (a−d−2A) with Kr :=
K

K −2

This kernel is regular! In Fourier transform notation

Kr =




κ1 κ2

κ†
2 κT

1



 († interchanges diagonal elements)

κ1 =
sinh((π−2γ)k)

2sinh(πk)




1 −e(π−2γ)k

−e(2γ−π)k 1



 , κ2 =
sinh(2γk)

2sinh(πk)




e(π−2γ)k −1

−1 e(2γ−π)k





Regular kernel Kr has one eigenvalue +1 for “momentum” k = 0 with eigenstate (1,−1,1,−1), and two

eigenvalues 0 and one eigenvalue close to 0.
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How to select the states?

Shifting n BA roots from one line to the other yields a winding of the logai(x) functions:

logai(∞)− logai(−∞) =±n2πi → quantization condition for the quasi-momentum

Modifications necessary for numerical evaluation of convolutions by Fourier transform

a = d +Kr ∗ (a−d−2A) = d +nw+Kr ∗ (a−d−nw̃−2A)

where n = 0,1,2... is the winding number and

w(x) =










w1(x)

w2(x)

w3(x)

w4(x)










, w̃(x) = 2log th
(g

2
x+ i

π

4

)

·










+1

−1

+1

−1










w1(x) =−w4(x) := log th 1
2

(

x+ i
(π

2
− γ
))

+ logth 1
2

(

x+ i
(

3γ− π

2

))

w2(x) =−w3(x) := log th 1
2

(

x− i
(π

2
− γ
))

+ logth 1
2

(

x− i
(

3γ− π

2

))
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Numerical Results I

Energy expression from derivative at x = 0

E −Le0 =−sin(2γ)

∫ ∞

−∞
dx

g2 coshgx

(sinhgx)2
[logA1(x)+ logA2(x)+ logA3(x)+ logA4(x)]

=
2π

L
vF

[

−1

6
+

2γ

π−2γ
s2

]

, where g =
π

π−2γ
.

Results for L = 2,10,102,103,106, ...,1024 and N = 214 = 16384 (N = 215 = 32768) grid points.

Computation time 40 s (80 s) for 1000 iterations (Intel i7 2.4 GHz), 16 decimals.

Next page: Plot of s from E by NLIE and above equation

Next after next page:

Comparison of energy E by NLIE with results by Bazhanov, Kotousov, Koval, Lukyanov 2019

(ODE/IQFT correspondence)

4s log




LΓ
(

3/2+ γ
π−2γ

)

√
πΓ
(

1+ γ
π−2γ

)



+8s
π− γ

γ
log(2)−2i log

(
Γ(1/2− is)

Γ(1/2+ is)

)

= n2π
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Numerical Results II

Plot of ratio n/s against system size L for parameters γ = 0.8 and n = 1,2,3.

quasi-momentum parameter s obtained from energies (main panel) and quasi-momenta (inset)

Continuous line corresponds to the asymptotic behavior s ≃ πn/2log L

Deviations between NLIE results and ODE/IQFT of order O
(
L−2

)
.
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Numerical Results III

Comparison of energies and quasi-momenta to ODE/IQFT results E = (2gγ/π)s2 and K = 4gγs

(inset) with s computed from Bazhanov, Kotousov, Koval, Lukyanov 2019 (γ = 0.8, n = 0,1,2,3).

difference vanishes algebraically like O(L−2), but not below values of the order 10−15 to 10−14
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What limits the accuracy?

To solve a= d+nw+Kr ∗(a−d−nw̃−2A) where terms in brackets for L= 109,1012 look like

-30 -20 -10 0 10 20 30

-0,4

-0,2

0

0,2

0,4

0,6

-30 -20 -10 0 10 20 30

-0,2

0

0,2

0,4

0,6

Equations are solved, LHS-RHS=0

-100 -50 0 50 100

-5e-16

0

5e-16
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Why has the kernel to be singular and what are the alternatives II

Claim / Theorem: All of us use the “same” functions and equivalent equations!

Candu, Ikhlef 2013: solve NLIE in the scaling limit

use same functions on possibly slightly shifted contours, work with the singular kernel.

Frahm, Seel 2013: solve up to L = 109

use “practically” same functions, two replaced in the way ãi = 1/a j , then

logai =− log ãi, logAi = log(1+ai) = log(1+1/ãi) = log Ãi − log ãi

Difference in way of organizing of what is on the left and what is on the right hand side.
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Analytical derivation of correction terms from NLIE version I

“Calculation of some result without solving integral equations”

(i) We use the NLIE with singular (!) kernel and differentiate it once

(logai)
′ = d′+

4

∑
j=1

K′
i j ∗ log(1+a j)

then we multiply from left with...

∫ ∞

0
dx

4

∑
i=1

log(1+ai(x))(logai(x))
′ =

∫ ∞

0
dx

4

∑
i=1

log(1+ai(x))d
′(x)+

1

2π

∫ ∞

0
dx

∫ ∞

−∞
dy

4

∑
i, j=1

log(1+ai(x))K
′
i j(x− y) log(1+a j(y))

LHS: change of variable gives dilogarithmic integral, only data ai(0), ai(∞) enter → π2/3.

RHS: 1st term is the wanted object, 2nd term – double integral – can be massaged

∫ ∞

0
dx

∫ ∞

−∞
dy...=

∫ ∞

0
dx

∫ ∞

0
dy...

︸ ︷︷ ︸

=0

+

∫ ∞

0
dx

∫ 0

−∞
dy...

the first term is zero by antisymmetry of the kernel, K′
i j(x− y) =−K′

ji(y− x).
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Analytical derivation of correction terms from NLIE version I

In the second term the kernel K is linear and K′
i j can be replaced by constants

...=− π

2γ(π−2γ)

∫ ∞

0
dx

∫ 0

−∞
dy

4

∑
i, j=1

(−1)i+ j log(1+ai(x)) log(1+a j(y)) =
π

2γ(π−2γ)
|I|2

where

I :=

∫ ∞

0
dx log

(1+a1(x))(1+a3(x))

(1+a2(x))(1+a4(x))

such an integral from −∞ to 0 gives −I (and is purely imaginary).

(ii) What is I? From the NLIE we derive

n2πi = loga1(+∞)− loga1(−∞) = ...= 2
1

4γ(π−2γ)

2logL

g
· I

Now we have for the double integral

...= 2π
γ

π−2γ

(
π2n

logL

)2

without having solved the NLIE or having applied Wiener-Hopf techniques.
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Descendent states: Bethe pattern for tower level N = 1

Leads to NLIE with additional source terms.
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Descendent states: ground-state and 1st excited state for N = 1

Comparison of energies and quasi-momenta for the descendant states E = (2gγ/π)s2 and

K = 4gγs with s computed from the quantization condition in BKKL 2019 (γ = 0.9, n = 0).

Difference vanishes like O(L−2), but not below values of the order 10−12 set by the accuracy of

our numerical calculations.
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Descendent states: ground-state and 1st excited state for N = 1

Solutions to NLIE for n = 0: logai −d and logAi = log(1+ai) for L = 1011

-20 -10 0 10 20

-2

-1

0

1

2

-20 -10 0 10 20

-0,4

-0,2

0

0,2

0,4

0,6

0,8

Reallocating 1 BA root from one line to the other (n =±1)

-20 -10 0 10 20

-6

-4

-2

0

2

4

6

-20 -10 0 10 20

-0,4

-0,2

0

0,2

0,4

0,6

0,8

with huge differences to functions for primary states.
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The supersymmetric sl(2|1) supersymmetric 33̄ model

Derivation of staggered vertex model and proof of integrability by R. Gade (1998)

extensive investigations of spectrum by Essler, Frahm, Saleur (2005)

Bethe ansatz equations as for the QTM of the supersymmetric tJ model

Φ−(u j + i)

Φ−(u j − i)
=−eiϕ qγ(u j + i)

qγ(u j − i)
, j = 1, ...,N

Φ+(γα + i)

Φ+(γα − i)
=−eiϕ qu(γα + i)

qu(γα − i)
, α = 1, ...,M

These equations are the same for the QTM of the tJ model and for the supersymmetric network model.

Characterization of largest eigenvalue differs:

tJ: maximum value of Λ network model: maximum value(s) of Λ · Λ̄

“strange strings” (Essler, Frahm, Saleur 2005)
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Compact notation for NLIEs: network model (version I)

Supersymmetric network model: 6 non-linear integral equations, version I

(

a1

a2

)

=

(

d

d

)

+

(

K −Ks Ks

Ks K −Ks

)

∗
(

A1

A2

)

where a1 and a2 are two copies of the 3d vector a, and A1 and A2 are two copies of the 3d vector A.

Driving terms

d :=






L log th π
2

x− iϕ/2

L log th π
2

x+ iϕ/2

0




 ,

and kernel matrices (in Fourier representation)

K(k) =
1

2coshk/2






e−|k|/2 −e−|k|/2−k 1

−e−|k|/2+k e−|k|/2 1

1 1 0




 , Ks(k) =







1
2sinh |k| − e−k

2sinh |k| − e−k/2

2sinh(k)

− ek

2sinh |k|
1

2sinh |k|
ek/2

2sinh(k)
ek/2

2sinh(k) − e−k/2

2sinh(k) 0







Good properties: symmetry K(−k)T = K(k), Ks(−k)T = Ks(k) may allow for analytic calculations of CFT

bad properties: Ks is very singular! Kernel of integral equations not integrable!

The 33̄ model – p.29/33



NLIEs version II: regular kernels

Most compact notation of NLIE as two weakly coupled 3×3 systems

ai = d ± d̃+K ∗Ai, i = 1,2 for which +,− applies

and additional driving term

d̃ :=
1

2
(K̃ −K)∗ (A1 −A2)−

1

2
K̃ ∗ (a1 −a2)

Regular kernels

K(k) = 1
2coshk/2







e−|k|/2 −e−|k|/2−k 1

−e−|k|/2+k e−|k|/2 1

1 1 0






, K(k) = KT (−k)

K̃(k > 0) =







− 1
ek+1

e−k − e−2k + e−k

ek+1
e−k/2 − e−3k/2

ek

ek+1
− 1

ek+1
0

0 e−k/2 − e−3k/2 −e−k






, K̃(k < 0) := K̃T (−k)
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Numerical solution to NLIE: ground-state

Ground state of model with ϕ = π completely degenerate, but not for ϕ 6= π.

a j :=






logb j

log b̄ j

logc j




 , A j :=






logB j

log B̄ j

logC j






For ϕ = π we know b j = b̄ j = 0, B j = B̄ j = 1, c j =−1,C j = 0.

For ϕ 6= π with d̃ = 0 we find numerically (L = 106)
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Numerical solution to NLIE: excited states, ϕ = π
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Summary

Results:

• Quick derivation of NLIEs

• Understanding of all published NLIE equations from one “master set” of NLIE

• Transformation from the singular form into a regular version

• Numerics by use of regular NLIE up to L = 1024

• Asymptotics analytically derived from singular version of NLIE

• Derivation and solution of NLIEs for non-primary states

• Some results for the 33̄ model with sl(2|1) symmetry: finite size correction O(1/ log L)

To do:

• What is the relation of the NLIE to ODE/IQFT?

• spectrum of the complex sinh-Gordon model

• treat the 33̄ model to same level of understanding
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