Managing Singular Kernels and Logarithmic Corrections in the Staggered Six-Vertex Model

On the alternating spin chain with continuous spectrum of scaling dimensions

Andreas Klümper, Mouhcine Azhari

University of Wuppertal

Contents

Outline

- The NN interaction spin-1/2 Heisenberg chain
- The alternating spin-1/2 Heisenberg chain
- continuously varying scaling dimensions

Bethe ansatz, $T Q$-equation
analytical reformulation in terms of NLIE with 4 functions singular kernel, regular kernel

- numerical results by use of the regular kernel, $L=2,10, \ldots, 10^{24}$
- derivation of asymptotical behaviour of energies by use of the singular kernel
- The $3 \overline{3}$-network model, $s l(2 \mid 1)$ supersymmetric

Work in collaboration with Mouhcine Azhari [arxiv 2406.09889] within DFG research group 2316 "Correlations in Integrable Quantum Many-Body Systems"

Heisenberg Model

Partially anisotropic Heisenberg model

$$
H=\sum_{j=1}^{L}\left[S_{j}^{x} S_{j+1}^{x}+S_{j}^{y} S_{j+1}^{y}+\Delta S_{j}^{z} S_{j+1}^{z}\right], \quad \Delta=\cos \gamma
$$

three phases for ground state:
$\Delta<-1$ (ferromagnetic), $-1<\Delta<+1$ (critical), $+1<\Delta$ (antiferromagnetic).
It is integrable/exactly solvable:
infinitely many conserved currents, Yang-Baxter equation for R-matrix of the 6 -vertex model

$$
R(u, v)=\underbrace{}_{v} u
$$

Transfer matrix $T(u)$ is family of commuting operators $\left[T\left(u_{1}\right), T\left(u_{2}\right)\right]=0$

$$
H=\left.\frac{d}{d u} \log T(u)\right|_{u=0}
$$

Properties

- Conformal spectrum (free massless compact boson)

$$
E(L)=L e_{0}+\frac{2 \pi}{L} v_{F}\left(-\frac{1}{12}+\frac{1-\gamma / \pi}{2} m^{2}+\frac{1}{2(1-\gamma / \pi)}(w-\phi / \pi)^{2}+N\right), \quad v_{F}=\pi \frac{\sin (\gamma)}{\gamma}
$$

with integers m (magnetization), w (momentum), and angle ϕ (in case of twisted boundary conditions).

- The lattice model satisfies the Temperley-Lieb Algebra

The spin- $1 / 2 X X Z$ chain (alias 6 -vertex model) is a faithful representation. The same eigenvalues are found in other representations of the TL-algebra

- self-dual Potts model
- loop models, $O(n)$ models, critical bond percolation (2d)
- restricted solid-on-solid models
- higher spin quantum chains, $s l(2 \mid 1)$ supersymmetric spin chain...

Mapping can be used to solve these models. Attention:
"new TL-model" with periodic b.c. \Leftrightarrow spin- $1 / 2 X X Z$ chain with twist
On the alternating spin chain with continuous spectrum of scaling dimensions - p. $4 /$

The (alternating) Heisenberg Chain with NN and NNN interactions

We use the construction

Transfer matrix $T(u)$ is family of commuting operators $\left[T\left(u_{1}\right), T\left(u_{2}\right)\right]=0$

$$
H=\left.\frac{d}{d u} \log T(u)\right|_{u=0}
$$

With broken translational invariance, except for $\alpha=\pi / 2$ for which

$$
H=\sum_{j=1}^{2 L}\left[-\frac{1}{2} \vec{\sigma}_{j} \vec{\sigma}_{j+2}+\sin ^{2} \gamma \sigma_{j}^{z} \sigma_{j+1}^{z}-\frac{\mathrm{i}}{2} \sin \gamma\left(\sigma_{j-1}^{z}-\sigma_{j+2}^{z}\right)\left(\sigma_{j}^{x} \sigma_{j+1}^{x}+\sigma_{j}^{y} \sigma_{j+1}^{y}\right)\right]
$$

Jacobsen, Saleur 2006, Ikhlef, Jacobsen, Saleur 2008+12 (non-compact continuum limit, log-corrections) Frahm, Martins 2011+12 (density functions, numerical solns.)
Candu, Ikhlef 2013, Frahm, Seel 2013 (non-linear integral eqs.)

The problem

Conformal spectrum

$$
E(L)=L e_{0}+\frac{2 \pi}{L} v_{F}\left(-\frac{1}{6}+\frac{\gamma}{2 \pi} m^{2}+\frac{\pi}{2 \gamma} w^{2}+\frac{2 \gamma}{\pi-2 \gamma} s^{2}+N\right), \quad v_{F}=\sin (2 \gamma) \frac{\pi}{\pi-2 \gamma}
$$

with "usual" integers m (magnetization), w (momentum) and "continuous" s, growing with reallocating n BA-roots from one line to the other (see later).

$$
s \simeq \frac{\pi n}{2 \log L}, \quad \operatorname{large} L, n=0,1,2, \ldots
$$

(Wiener-Hopf technique by IJS 12)

- "non-compact continuum limit", continuous component in the spectrum of conformal dimensions
- Ikhlef, Jacobsen, Saleur 12: Euclidean black hole NLSM (Maldacena, Ooguri (2001), Maldacena, Ooguri, Son (2001), Hanany, Prezas, Troost (2002)) is the CFT governing the scaling limit
- Fantastically accurate quantization condition for s valid even for quite finite systems by Bazhanov, Kotousov, Koval, Lukyanov 2019, 20, 21, $\Rightarrow S L(2, \mathbb{R}) / U(1)$ NLSM on Euclidean \rightarrow Lorentzian black hole.
They use, among other things, the ODE/IQFT correspondence in the scaling limit.

Bethe ansatz equations / $T Q$ relations

$$
\begin{aligned}
& \Lambda(z)=\Phi(z-\mathrm{i} \gamma) \frac{q(z+2 \mathrm{i} \gamma)}{q(z)}+\Phi(z+\mathrm{i} \gamma) \frac{q(z-2 \mathrm{i} \gamma)}{q(z)}, \quad(T q=\Phi q+\Phi q) \\
& \Phi(z)=\sinh ^{L} z, \quad q(z)=\prod_{j} \sinh \frac{1}{2}\left(z-z_{j}\right)
\end{aligned}
$$

Parameterization with $2 \pi i$-periodicity, 2 independent analyticity regions. For ground state

The usual procedure... and beyond

The Bethe ansatz equations (e.g. from analyticity condition for $\Lambda(z)$)

$$
\frac{\Phi\left(z_{i}+\mathrm{i} \gamma\right)}{\Phi\left(z_{i}-\mathrm{i} \gamma\right)}=-\frac{q\left(z_{i}+2 \mathrm{i} \gamma\right)}{q\left(z_{i}-2 \mathrm{i} \gamma\right)} \quad \text { explicitly } \quad\left(\frac{\sinh \left(z_{i}+\mathrm{i} \gamma\right)}{\sinh \left(z_{i}-\mathrm{i} \gamma\right)}\right)^{L}=-\prod_{j} \frac{\sinh \frac{1}{2}\left(z_{i}-z_{j}+2 \mathrm{i} \gamma\right)}{\sinh \frac{1}{2}\left(z_{i}-z_{j}-2 \mathrm{i} \gamma\right)}
$$

Or more compactly

$$
a(z):=\frac{\Phi(z+\mathrm{i} \gamma) q(z-2 \mathrm{i} \gamma)}{\Phi(z-\mathrm{i} \gamma) q(z+2 \mathrm{i} \gamma)}, \quad \text { BA eqns } \quad a\left(z_{i}\right)=-1
$$

We use this function off the distribution lines like in AK, Batchelor 90; AK, Batchelor, Pearce 91; AK 92; Destri, de Vega 92, 95; J. Suzuki 98.

The "auxiliary functions" ... destined to satisfy integral equations

"It is convenient to consider" ($A_{k}=1+a_{k}$ factorize thanks to the $T Q$ relation $)$

$$
\begin{aligned}
& a_{1}(x):=\frac{1}{a(x+\mathrm{i} \gamma)}=\frac{\Phi(x)}{\Phi(x+2 \mathrm{i} \gamma)} \frac{q(x+3 \mathrm{i} \gamma)}{q(x-\mathrm{i} \gamma)} \\
& a_{2}(x):=a(x+\mathrm{i} \pi-\mathrm{i} \gamma)=\frac{\Phi(x)}{\Phi(x-2 \mathrm{i} \gamma)} \frac{q(x+\mathrm{i} \pi-3 \mathrm{i} \gamma)}{q(x+\mathrm{i} \pi+\mathrm{i} \gamma)} \\
& a_{3}(x):=a(x-\mathrm{i} \gamma)=\frac{\Phi(x)}{\Phi(x-2 \mathrm{i} \gamma)} \frac{q(x-3 \mathrm{i} \gamma)}{q(x+\mathrm{i} \gamma)} \\
& a_{4}(x):=\frac{1}{a(x+\mathrm{i} \pi+\mathrm{i} \gamma)}=\frac{\Phi(x)}{\Phi(x+2 \mathrm{i} \gamma)} \frac{q(x+\mathrm{i} \pi+3 \mathrm{i} \gamma)}{q(x+\mathrm{i} \pi-\mathrm{i} \gamma)} \\
& A_{1}(x):=1+a_{1}(x)=\frac{1}{\Phi(x+2 \mathrm{i} \gamma)} \frac{q(x+\mathrm{i} \gamma)}{q(x-\mathrm{i} \gamma)} \Lambda(x+\mathrm{i} \gamma) \\
& A_{2}(x):=1+a_{2}(x)=\frac{1}{\Phi(x-2 \mathrm{i} \gamma)} \frac{q(x+\mathrm{i} \pi-\mathrm{i} \gamma)}{q(x+\mathrm{i} \pi+\mathrm{i} \gamma)} \Lambda(x+\mathrm{i} \pi-\mathrm{i} \gamma) \\
& A_{3}(x):=1+a_{3}(x)=\frac{1}{\Phi(x-2 \mathrm{i} \gamma)} \frac{q(x-\mathrm{i} \gamma)}{(x+\mathrm{i} \gamma)} \Lambda(x-\mathrm{i} \gamma) \\
& A_{4}(x):=1+a_{4}(x)=\frac{1}{\Phi(x+2 \mathrm{i} \gamma)} \frac{q(x+\mathrm{i} \pi+\mathrm{i} \gamma)}{q(x+\mathrm{i} \pi-\mathrm{i} \gamma)} \Lambda(x+\mathrm{i} \pi+\mathrm{i} \gamma)
\end{aligned}
$$

Analyzing multiplicative functional equations by Fourier transform

- We have 2 analytic functions $q(z), \Lambda(z)$ each with 2 horizontal strips with convergent Fourier representation for its logarithm: makes 4 "independent functions"
- We defined additional 8 functions: $a_{1}(x), \ldots, a_{4}(x), A_{1}(x), \ldots, A_{4}(x)$.
- We set up 8 multiplicative functional equations, like (indices of q, Λ refer to analyticity strips)

$$
a_{1}(x)=\frac{\Phi(x)}{\Phi(x+2 \mathrm{i} \gamma)} \frac{q_{I I}(x+3 \mathrm{i} \gamma)}{q_{I}(x-\mathrm{i} \gamma)}, \quad A_{2}(x)=\frac{1}{\Phi(x-2 \mathrm{i} \gamma)} \frac{q_{I I}(x+\mathrm{i} \pi-\mathrm{i} \gamma)}{q_{I I}(x+\mathrm{i} \pi+\mathrm{i} \gamma)} \Lambda_{I I}(x+\mathrm{i} \pi-\mathrm{i} \gamma)
$$

- Solve $a_{1}, \ldots, a_{4}, q_{I}, q_{2}, \Lambda_{I}, \Lambda_{I I}$ in terms of A_{1}, \ldots, A_{4}.

How do we do with this? Equations like

$$
f(x)=g(x+\mathrm{i} \alpha) / h(x+\mathrm{i} \beta)
$$

after log-derivative and Fourier transform turn into

$$
\mathrm{FT}\left[(\log f)^{\prime}\right]_{k}=\mathrm{e}^{-\alpha k} \mathrm{FT}\left[(\log g)^{\prime}\right]_{k}-\mathrm{e}^{-\beta k} \mathrm{FT}\left[(\log h)^{\prime}\right]_{k}
$$

The 8 multiplicative functional equations turn into 8 linear equations for the Fourier transforms...

The non-linear integral equations, version I - singular kernel

$$
\left(\begin{array}{l}
\log a_{1} \\
\log a_{2} \\
\log a_{3} \\
\log a_{4}
\end{array}\right)=d+K *\left(\begin{array}{l}
\log A_{1} \\
\log A_{2} \\
\log A_{3} \\
\log A_{4}
\end{array}\right), \quad d(x)=L \log \operatorname{th}\left(\frac{1}{2} g x\right) \cdot\left(\begin{array}{l}
1 \\
1 \\
1 \\
1
\end{array}\right), \quad g:=\frac{\pi}{\pi-2 \gamma}
$$

The kernel in Fourier transform notation

$$
\begin{aligned}
K & =\left(\begin{array}{ll}
\sigma_{1} & \sigma_{2} \\
\sigma_{2}^{\dagger} & \sigma_{1}^{T}
\end{array}\right) \quad \text { († interchanges diagonal elements) } \\
\sigma_{1} & =\frac{\cosh ((\pi-3 \gamma) k)}{2 \sinh (\gamma k) \sinh ((\pi-2 \gamma) k)}\left(\begin{array}{cc}
-1 & \mathrm{e}^{(\pi-2 \gamma) k} \\
\mathrm{e}^{(2 \gamma-\pi) k} & -1
\end{array}\right) \\
\sigma_{2} & =\frac{\cosh (\gamma k)}{2 \sinh (\gamma k) \sinh ((\pi-2 \gamma) k)}\left(\begin{array}{cc}
-\mathrm{e}^{(\pi-2 \gamma) k} & 1 \\
1 & -\mathrm{e}^{(2 \gamma-\pi) k}
\end{array}\right)
\end{aligned}
$$

which is highly singular: in real space with asymptotics $K_{i, j}(x) \simeq|x|$.

The eigenvalue

For x (slightly below the real axis) the eigenvalue splits into pure bulk and finite size part

$$
\begin{aligned}
\log [\Lambda(x-\mathrm{i} \gamma) \Lambda(x+\mathrm{i}(\pi-\gamma))] & =L \cdot \lambda(x)+\kappa *\left[\log A_{1}+\log A_{2}+\log A_{3}+\log A_{4}\right] \\
\kappa(x) & =-\mathrm{i} \frac{g}{\sinh (g x)}, \quad g=\frac{\pi}{\pi-2 \gamma}
\end{aligned}
$$

Energy expression from derivative at $x=0$

$$
\begin{aligned}
E & =\sin (2 \gamma) \frac{d}{d x} \log [\Lambda(x-\mathrm{i} \gamma) \Lambda(x+\mathrm{i}(\pi-\gamma))] \\
& =L e_{0}-\sin (2 \gamma) \int_{-\infty}^{\infty} d x \frac{g^{2} \cosh g x}{(\sinh g x)^{2}}\left[\log A_{1}(x)+\log A_{2}(x)+\log A_{3}(x)+\log A_{4}(x)\right]
\end{aligned}
$$

where $g=\frac{\pi}{\pi-2 \gamma}$.
Quasi-momentum

$$
Q=\mathrm{i} g \int_{-\infty}^{\infty} d x \operatorname{coth} g x\left[\log A_{1}(x)-\log A_{2}(x)+\log A_{3}(x)-\log A_{4}(x)\right]
$$

The ground-state solution and 1st excited state

True ground state solution: $\quad \log a_{i}-d \quad$ and $\quad \log A_{i}=\log \left(1+a_{i}\right) \quad$ for $L=10^{9}$

Reallocating 1 BA root from one line to the other $(n= \pm 1)$ has solution

with huge changes in the $\log a_{i}$ functions, but only little in the $\log A_{i}$.

Why has the kernel to be singular and what are the alternatives I

...with huge changes in the $\log a_{i}$ functions, but only little in the $\log A_{i}$.
$\log A_{1}$ for ground state and excited state

The optimal arrangement of the NLIE, version II - regular kernel

Super-great manipulation

$$
a=\left(\log a_{i}\right), A=\left(\log \left(1+a_{i}\right)\right.
$$

$$
\begin{aligned}
a & =d+K * A \\
2(a-d) & =K * 2 A=K *(2 A-(a-d))+K *(a-d) \\
(2-K) *(a-d) & =K *(2 A-(a-d)) \\
a & =d+K_{r} *(a-d-2 A) \quad \text { with } \quad K_{r}:=\frac{K}{K-2}
\end{aligned}
$$

This kernel is regular! In Fourier transform notation

$$
\begin{aligned}
& K_{r}=\left(\begin{array}{ll}
\kappa_{1} & \kappa_{2} \\
\kappa_{2}^{\dagger} & \kappa_{1}^{T}
\end{array}\right) \quad \text { († interchanges diagonal elements) } \\
& \kappa_{1}=\frac{\sinh ((\pi-2 \gamma) k)}{2 \sinh (\pi k)}\left(\begin{array}{cc}
1 & -\mathrm{e}^{(\pi-2 \gamma) k} \\
-\mathrm{e}^{(2 \gamma-\pi) k} & 1
\end{array}\right), \quad \kappa_{2}=\frac{\sinh (2 \gamma k)}{2 \sinh (\pi k)}\left(\begin{array}{cc}
\mathrm{e}^{(\pi-2 \gamma) k} & -1 \\
-1 & \mathrm{e}^{(2 \gamma-\pi) k}
\end{array}\right)
\end{aligned}
$$

Regular kernel K_{r} has one eigenvalue +1 for "momentum" $k=0$ with eigenstate ($1,-1,1,-1$), and two eigenvalues 0 and one eigenvalue close to 0 .

How to select the states?

Shifting $n \mathrm{BA}$ roots from one line to the other yields a winding of the $\log a_{i}(x)$ functions: $\log a_{i}(\infty)-\log a_{i}(-\infty)= \pm n 2 \pi \mathrm{i} \quad \rightarrow$ quantization condition for the quasi-momentum

Modifications necessary for numerical evaluation of convolutions by Fourier transform

$$
a=d+K_{r} *(a-d-2 A)=d+n w+K_{r} *(a-d-n \tilde{w}-2 A)
$$

where $n=0,1,2 \ldots$ is the winding number and

$$
\begin{gathered}
w(x)=\left(\begin{array}{l}
w_{1}(x) \\
w_{2}(x) \\
w_{3}(x) \\
w_{4}(x)
\end{array}\right), \quad \tilde{w}(x)=2 \log \operatorname{th}\left(\frac{g}{2} x+\mathrm{i} \frac{\pi}{4}\right) \cdot\left(\begin{array}{l}
+1 \\
-1 \\
+1 \\
-1
\end{array}\right) \\
w_{1}(x)=-w_{4}(x):=\log \operatorname{th} \frac{1}{2}\left(x+\mathrm{i}\left(\frac{\pi}{2}-\gamma\right)\right)+\log \operatorname{th} \frac{1}{2}\left(x+\mathrm{i}\left(3 \gamma-\frac{\pi}{2}\right)\right) \\
w_{2}(x)=-w_{3}(x):=\log \operatorname{th} \frac{1}{2}\left(x-\mathrm{i}\left(\frac{\pi}{2}-\gamma\right)\right)+\log \operatorname{th} \frac{1}{2}\left(x-\mathrm{i}\left(3 \gamma-\frac{\pi}{2}\right)\right)
\end{gathered}
$$

Numerical Results I

Energy expression from derivative at $x=0$

$$
\begin{aligned}
E-L e_{0} & =-\sin (2 \gamma) \int_{-\infty}^{\infty} d x \frac{g^{2} \cosh g x}{(\sinh g x)^{2}}\left[\log A_{1}(x)+\log A_{2}(x)+\log A_{3}(x)+\log A_{4}(x)\right] \\
& =\frac{2 \pi}{L} v_{F}\left[-\frac{1}{6}+\frac{2 \gamma}{\pi-2 \gamma} s^{2}\right], \quad \quad \text { where } g=\frac{\pi}{\pi-2 \gamma} .
\end{aligned}
$$

Results for $L=2,10,10^{2}, 10^{3}, 10^{6}, \ldots, 10^{24}$ and $N=2^{14}=16384\left(N=2^{15}=32768\right)$ grid points.
Computation time $40 \mathrm{~s}(80 \mathrm{~s})$ for 1000 iterations (Intel i7 2.4 GHz), 16 decimals.
Next page: Plot of s from E by NLIE and above equation
Next after next page:
Comparison of energy E by NLIE with results by Bazhanov, Kotousov, Koval, Lukyanov 2019 (ODE/IQFT correspondence)

$$
4 s \log \left(\frac{L \Gamma\left(3 / 2+\frac{\gamma}{\pi-2 \gamma}\right)}{\sqrt{\pi} \Gamma\left(1+\frac{\gamma}{\pi-2 \gamma}\right)}\right)+8 s \frac{\pi-\gamma}{\gamma} \log (2)-2 \mathrm{i} \log \left(\frac{\Gamma(1 / 2-\mathrm{i} s)}{\Gamma(1 / 2+\mathrm{i} s)}\right)=n 2 \pi
$$

Numerical Results II

Plot of ratio n / s against system size L for parameters $\gamma=0.8$ and $n=1,2,3$. quasi-momentum parameter s obtained from energies (main panel) and quasi-momenta (inset) Continuous line corresponds to the asymptotic behavior $s \simeq \pi n / 2 \log L$

Deviations between NLIE results and ODE/IQFT of order $O\left(L^{-2}\right)$.

Numerical Results III

Comparison of energies and quasi-momenta to ODE/IQFT results $E=(2 g \gamma / \pi) s^{2}$ and $K=4 g \gamma s$ (inset) with s computed from Bazhanov, Kotousov, Koval, Lukyanov $2019(\gamma=0.8, n=0,1,2,3)$.

difference vanishes algebraically like $O\left(L^{-2}\right)$, but not below values of the order 10^{-15} to 10^{-14}

What limits the accuracy?

To solve $\quad a=d+n w+K_{r} *(a-d-n \tilde{w}-2 A) \quad$ where terms in brackets for $L=10^{9}, 10^{12}$ look like

Equations are solved, LHS-RHS=0

Why has the kernel to be singular and what are the alternatives II

Claim / Theorem: All of us use the "same" functions and equivalent equations!

Candu, Ikhlef 2013:
solve NLIE in the scaling limit use same functions on possibly slightly shifted contours, work with the singular kernel.

Frahm, Seel 2013:

$$
\text { solve up to } L=10^{9}
$$

use "practically" same functions, two replaced in the way $\tilde{a}_{i}=1 / a_{j}$, then

$$
\log a_{i}=-\log \tilde{a}_{i}, \quad \log A_{i}=\log \left(1+a_{i}\right)=\log \left(1+1 / \tilde{a}_{i}\right)=\log \tilde{A}_{i}-\log \tilde{a}_{i}
$$

Difference in way of organizing of what is on the left and what is on the right hand side.

Analytical derivation of correction terms from NLIE version I

"Calculation of some result without solving integral equations"
(i) We use the NLIE with singular (!) kernel and differentiate it once

$$
\left(\log a_{i}\right)^{\prime}=d^{\prime}+\sum_{j=1}^{4} K_{i j}^{\prime} * \log \left(1+a_{j}\right)
$$

then we multiply from left with...

$$
\begin{aligned}
& \int_{0}^{\infty} d x \sum_{i=1}^{4} \log \left(1+a_{i}(x)\right)\left(\log a_{i}(x)\right)^{\prime}= \\
& \int_{0}^{\infty} d x \sum_{i=1}^{4} \log \left(1+a_{i}(x)\right) d^{\prime}(x)+\frac{1}{2 \pi} \int_{0}^{\infty} d x \int_{-\infty}^{\infty} d y \sum_{i, j=1}^{4} \log \left(1+a_{i}(x)\right) K_{i j}^{\prime}(x-y) \log \left(1+a_{j}(y)\right)
\end{aligned}
$$

LHS: change of variable gives dilogarithmic integral, only data $a_{i}(0), a_{i}(\infty)$ enter $\rightarrow \pi^{2} / 3$.
RHS: 1st term is the wanted object, 2nd term - double integral - can be massaged

$$
\int_{0}^{\infty} d x \int_{-\infty}^{\infty} d y \ldots=\underbrace{\int_{0}^{\infty} d x \int_{0}^{\infty} d y \ldots}_{=0}+\int_{0}^{\infty} d x \int_{-\infty}^{0} d y \ldots
$$

the first term is zero by antisymmetry of the kernel, $K_{i j}^{\prime}(x-y)=-K_{j i}^{\prime}(y-x)$.

Analytical derivation of correction terms from NLIE version I

In the second term the kernel K is linear and $K_{i j}^{\prime}$ can be replaced by constants

$$
\ldots=-\frac{\pi}{2 \gamma(\pi-2 \gamma)} \int_{0}^{\infty} d x \int_{-\infty}^{0} d y \sum_{i, j=1}^{4}(-1)^{i+j} \log \left(1+a_{i}(x)\right) \log \left(1+a_{j}(y)\right)=\frac{\pi}{2 \gamma(\pi-2 \gamma)}|I|^{2}
$$

where

$$
I:=\int_{0}^{\infty} d x \log \frac{\left(1+a_{1}(x)\right)\left(1+a_{3}(x)\right)}{\left(1+a_{2}(x)\right)\left(1+a_{4}(x)\right)}
$$

such an integral from $-\infty$ to 0 gives $-I$ (and is purely imaginary).
(ii) What is I? From the NLIE we derive

$$
n 2 \pi \mathrm{i}=\log a_{1}(+\infty)-\log a_{1}(-\infty)=\ldots=2 \frac{1}{4 \gamma(\pi-2 \gamma)} \frac{2 \log L}{g} \cdot I
$$

Now we have for the double integral

$$
\ldots=2 \pi \frac{\gamma}{\pi-2 \gamma}\left(\frac{\pi^{2} n}{\log L}\right)^{2}
$$

without having solved the NLIE or having applied Wiener-Hopf techniques.

Descendent states: Bethe pattern for tower level $N=1$

Leads to NLIE with additional source terms.

Descendent states: ground-state and 1st excited state for $N=1$

Comparison of energies and quasi-momenta for the descendant states $E=(2 g \gamma / \pi) s^{2}$ and $K=4 g \gamma s$ with s computed from the quantization condition in BKKL $2019(\gamma=0.9, n=0)$.

Difference vanishes like $O\left(L^{-2}\right)$, but not below values of the order 10^{-12} set by the accuracy of our numerical calculations.

Descendent states: ground-state and 1st excited state for $N=1$

Solutions to NLIE for $n=0: \quad \log a_{i}-d \quad$ and $\quad \log A_{i}=\log \left(1+a_{i}\right) \quad$ for $L=10^{11}$

Reallocating 1 BA root from one line to the other ($n= \pm 1$)

with huge differences to functions for primary states.

The supersymmetric $s l(2 \mid 1)$ supersymmetric $3 \overline{3}$ model

Derivation of staggered vertex model and proof of integrability by R. Gade (1998) extensive investigations of spectrum by Essler, Frahm, Saleur (2005)
Bethe ansatz equations as for the QTM of the supersymmetric $t J$ model

$$
\begin{aligned}
& \frac{\Phi_{-}\left(u_{j}+\mathrm{i}\right)}{\Phi_{-}\left(u_{j}-\mathrm{i}\right)}=-\mathrm{e}^{\mathrm{i} \varphi} \frac{q_{\gamma}\left(u_{j}+\mathrm{i}\right)}{q_{\gamma}\left(u_{j}-\mathrm{i}\right)}, \quad j=1, \ldots, N \\
& \frac{\Phi_{+}\left(\gamma_{\alpha}+\mathrm{i}\right)}{\Phi_{+}\left(\gamma_{\alpha}-\mathrm{i}\right)}=-\mathrm{e}^{\mathrm{i} \varphi} \frac{q_{u}\left(\gamma_{\alpha}+\mathrm{i}\right)}{q_{u}\left(\gamma_{\alpha}-\mathrm{i}\right)}, \quad \alpha=1, \ldots, M
\end{aligned}
$$

These equations are the same for the QTM of the $t J$ model and for the supersymmetric network model.
Characterization of largest eigenvalue differs:
$t J$: maximum value of Λ

"strange strings" (Essler, Frahm, Saleur 2005)

Compact notation for NLIEs: network model (version I)

Supersymmetric network model: 6 non-linear integral equations, version I

$$
\binom{a_{1}}{a_{2}}=\binom{d}{d}+\left(\begin{array}{cc}
K-K_{s} & K_{s} \\
K_{s} & K-K_{s}
\end{array}\right) *\binom{A_{1}}{A_{2}}
$$

where a_{1} and a_{2} are two copies of the 3 d vector a, and A_{1} and A_{2} are two copies of the 3 d vector A. Driving terms

$$
d:=\left(\begin{array}{c}
L \log \operatorname{th} \frac{\pi}{2} x-\mathrm{i} \varphi / 2 \\
L \log \operatorname{th} \frac{\pi}{2} x+\mathrm{i} \varphi / 2 \\
0
\end{array}\right)
$$

and kernel matrices (in Fourier representation)

$$
K(k)=\frac{1}{2 \cosh k / 2}\left(\begin{array}{ccc}
\mathrm{e}^{-|k| / 2} & -\mathrm{e}^{-|k| / 2-k} & 1 \\
-\mathrm{e}^{-|k| / 2+k} & \mathrm{e}^{-|k| / 2} & 1 \\
1 & 1 & 0
\end{array}\right), K_{S}(k)=\left(\begin{array}{ccc}
\frac{1}{2 \sinh |k|} & -\frac{\mathrm{e}^{-k}}{2 \sinh |k|} & -\frac{\mathrm{e}^{-k / 2}}{2 \sinh (k)} \\
-\frac{\mathrm{e}^{k}}{2 \sinh |k|} & \frac{1}{2 \sinh |k|} & \frac{\mathrm{e}^{k / 2}}{2 \sinh (k)} \\
\frac{\mathrm{e}^{k / 2}}{2 \sinh (k)} & -\frac{\mathrm{e}^{-k / 2}}{2 \sinh (k)} & 0
\end{array}\right)
$$

Good properties: symmetry $K(-k)^{T}=K(k), K_{s}(-k)^{T}=K_{s}(k)$ may allow for analytic calculations of CFT bad properties: K_{s} is very singular! Kernel of integral equations not integrable!

NLIEs version II: regular kernels

Most compact notation of NLIE as two weakly coupled 3×3 systems

$$
a_{i}=d \pm \tilde{d}+K * A_{i}, \quad i=1,2 \quad \text { for which }+,- \text { applies }
$$

and additional driving term

$$
\tilde{d}:=\frac{1}{2}(\tilde{K}-K) *\left(A_{1}-A_{2}\right)-\frac{1}{2} \tilde{K} *\left(a_{1}-a_{2}\right)
$$

Regular kernels

$$
\begin{aligned}
& K(k)=\frac{1}{2 \cosh k / 2}\left(\begin{array}{ccc}
\mathrm{e}^{-|k| / 2} & -\mathrm{e}^{-|k| / 2-k} & 1 \\
-\mathrm{e}^{-|k| / 2+k} & \mathrm{e}^{-|k| / 2} & 1 \\
1 & 1 & 0
\end{array}\right),
\end{aligned} \quad K(k)=K^{T}(-k)
$$

Numerical solution to NLIE: ground-state

Ground state of model with $\varphi=\pi$ completely degenerate, but not for $\varphi \neq \pi$.

$$
a_{j}:=\left(\begin{array}{c}
\log b_{j} \\
\log \bar{b}_{j} \\
\log c_{j}
\end{array}\right), \quad A_{j}:=\left(\begin{array}{c}
\log B_{j} \\
\log \bar{B}_{j} \\
\log C_{j}
\end{array}\right)
$$

For $\varphi=\pi$ we know $\quad b_{j}=\bar{b}_{j}=0, B_{j}=\bar{B}_{j}=1, \quad c_{j}=-1, C_{j}=0$.
For $\varphi \neq \pi$ with $\tilde{d}=0$ we find numerically $\left(L=10^{6}\right)$

Numerical solution to NLIE: excited states, $\varphi=\pi$

Summary

Results:

- Quick derivation of NLIEs
- Understanding of all published NLIE equations from one "master set" of NLIE
- Transformation from the singular form into a regular version
- Numerics by use of regular NLIE up to $L=10^{24}$
- Asymptotics analytically derived from singular version of NLIE
- Derivation and solution of NLIEs for non-primary states
- Some results for the $3 \overline{3}$ model with $s l(2 \mid 1)$ symmetry: finite size correction $O(1 / \log L)$

To do:

- What is the relation of the NLIE to ODE/IQFT?
- spectrum of the complex sinh-Gordon model
- treat the $3 \overline{3}$ model to same level of understanding

