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Introduction

• 1920, Wilhelm Lenz, to explain the physical phenomenon that the magnetism of
magnet disappears when the temperature is larger than a critical value

H = J

NX

j=1

�j�j+1

1. two kinds of states in nature: ordered and disordered.
paramagnetic and ferromagnetic states
normal and superfluid states
normal and superconductive states
2. the transition between two states.

1920, Ising, 1D
1944, Onsager, 2D

Open a new field: Ising model has many applications in many fields such as the
folding of DNA in organisms, the spread of viruses, artificial intelligence,
activation and deactivation of brain nerve cells, weather forecast, forest fire, social
sciences, finance.
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• 1928, Heisenberg model

H = J

NX

j=1

~�j · ~�j+1

spin exchanging interaction
quantum magnetism: AFM, FM
coordinate Bethe ansatz
quantum inverse scattering method
spinon, fractional excitations
anisotropic couplings, magnetic ordered states, quantum phase transitions

H = �
NX

j=1

(�x
j �

x
j+1 + �y

j �
y
j+1

+��z
j �

z
j+1)

|�| < 1, gapless phase; |�| > 1, gapped phase;
|�| = 1, critical points. � = �1, first order phase transition; � = 1, KT phase
transition
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• Integrability: number of degree of freedom = number of conserved quantities.
Quantum integrable systems can provide the benchmark for many new

phenomena and physical concepts, and check the correction of numerical methods
and numerical results. An important branch of modern physics.

1. U(1) symmetry

2. U(1) symmetry is broken

XYZ spin chain
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The quantum spin chain with competing interactions

• Nearest neighbor interaction

H = J1

NX

j=1

~�j · ~�j+1

• Next nearest neighbor interaction

H =
NX

j=1

(J1~�j · ~�j+1 + J2~�j · ~�j+2)

⇧ Phase diagram: Define J = J2/J1. When 0 < J < Jcr , the ground state remains
gapless, as is the case when J = 0. When J > Jcr , the spectrum becomes gapped.
The critical point is Jcr = 0.2411, where there is a KT phase transition.
⇧ When J = 1/2, the Hamiltonian is exactly solvable, Majumdar-Ghosh model
• Integrable quantum spin chain with competing interactions

Hbulk =
2N�1X

j=1

�
J1~�j · ~�j+1+J2~�j · ~�j+2 + J3(�1)j~�j+1 · (~�j ⇥ ~�j+2)

 

chiral three-spin interactions, spin liquid
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X periodic or diagonal boundary reflection; Bethe asnatz

X anti-periodic and general open boundary conditions; o↵-diagonal Bethe asnatz

X References: Nucl. Phys. B 954, 115007 (2020); J. Phys. A 53, 075205 (2020);
J. Phys. A 54, 315202 (2021); Commun. Theor. Phys. 73, 075001 (2021); Chin.
Phys. B 30, 117501 (2021); Nucl. Phys. B 975, 115663 (2022); Phys. Rev. D
107, 056005 (2023).
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• Heisenberg model with open boundary condition

H =
N�1X

j=1

~�j · ~�j+1 + h1�
z
1+h

x
N�

x
N + h

z
N�

z
N

• The present model with open boundary condition

H = Hbulk + HL + HR

HL =
1� 4a2

p2 � a2
[p�z

1 � a
2�z

1�
z
2 � iapD

z
1 · (~�1 ⇥ ~�2)]

HR =
4a2 � 1

a2⇠2 + a2 � q2

⇥
q(⇠�x

2N + �z
2N)� a

2(⇠�x
2N�1 + �z

2N�1)(⇠�
x
2N + �z

2N)

�iaq(⇠Dx
2N + D

z
2N) · (~�2N ⇥ ~�2N�1)

⇤

z Dzyloshinsky-Moriya interaction: ~D · (~�j ⇥ ~�j+1)
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• Integrability
Generating functional

t(u) = tr0{K+

0
(u)T0(u)K

�
0
(u)T̂0(u)}

T0(u)=R0,2N(u+a+✓2N)R0,2N�1(u�a�✓2N�1) · · ·R0,2(u+a+✓2)R0,1(u�a�✓1)

T̂0(u)=R0,1(u+a+✓1)R0,2(u�a�✓2) · · ·R0,2N�1(u+ a+✓2N�1)R0,2N(u�a�✓2N)

R0,j(u) = u + P0,j = u +
1

2
(1 + ~�0 · ~�j)

K
�
0
(u) =

✓
p + u

p � u

◆
, K

+

0
(u) =

✓
q + u + 1 ⇠(u + 1)
⇠(u + 1) q � u � 1

◆

H = c
�1

2

�
t(a)t(�a)

✓
@ ln t(u)

@u

��
u=a

+
@ ln t(u)

@u

◆ ��
u=�a

 ���
{✓j}=0

� c0

The reflection matrix has the non-diagonal elements. The spin of quasi-particle
could be changed after the boundary reflections. Thus the particle number of
fixed spin is not conserved and the traditional Bethe ansatz does not work.
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• O↵-diagonal Bethe ansatz

t(u) is a polynomial operator of u with the degree 4N + 2 and satisfies the
crossing symmetry

t(u) = t(�u � 1)

Thus the degree of polynomial is reduced ti 2N + 1, and its eigenvalue can be
completely determined by 2N + 2 conditions.

fusion and operator product identities

t(✓j + a)t(✓j + a� 1) = a(✓j + a)d(✓j + a� 1), j = 1, · · · , 2N

In the homogeneous limit {✓j = 0}

[t(u + a)t(u + a� 1)](n)|u=0 = [a(u + a)d(u + a� 1)](n)|u=0, n = 1, · · · , 2N

asymptotic behavior : t(u)|u!±1 = 2u4N+2 + · · ·

t(0) = 2 p q
2NY

j=1

(1� ✓j � a)(1 + ✓j + a)
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• Inhomogeneous T � Q relation with {✓j = 0}

⇤(u) = a(u)
Q(u � 1)

Q(u)
+ d(u)

Q(u + 1)

Q(u)
+ 2[1� (1 + ⇠2)

1

2 ]u(u + 1)

⇥ (u2 � a
2)2N [(u + 1)2 � a

2]2N

Q(u)

Bethe roots

Q(u) =
2NY

j=1

(u � �j)(u + �j + 1)

Bethe ansatz equations (BAEs)

a(�j)Q(�j � 1) + d(�j)Q(�j + 1) = �2[1� (1 + ⇠2)
1

2 ]�j(�j + 1)

⇥(�2j � a
2)2N [(�j + 1)2 � a

2]2N , j = 1, · · · , 2N
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Thermodynamic limit and thermodynamic Bethe ansatz

The main idea of TBA

Y
=
Y

ln
Q

=
P

�!
X

=
X

If N ! 1, then
P

!
R

and we obtain the integration equation for the Bethe
roots. By solving it, we can calculate the density of Bethe roots, ground state
energy density, elementary excitations, and thermodynamic quantities at finite
temperature such as free energy, specific heat and magnetic susceptibility.

For the present case, the thermodynamic Bethe ansatz does not work. Reason:

ln
⇣Y

+
Y⌘

6=
X

.

Our methods:
1. Degenerate points.
2. Reduced T � Q relation (numerical and analytical calculations).
3. The universal t �W approach.
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• Exact physical quantities in the thermodynamic limit

zero-roots parametrization

⇤(u) = 2
2N+1Y

j=1

(u � zj +
1

2
)(u + zj +

1

2
)

Substituting it into the fusion relation, we obtain

⇤(✓j + a)⇤(✓j + a� 1) = a(✓j + a)d(✓j + a� 1), j = 1, · · · , 2N

Bethe ansatz equations

4
2N+1Y

l=1

(✓j + a� zl +
1

2
)(✓j + a+ zl +

1

2
)(✓j + a� zl �

1

2
)(✓j + a+ zl �

1

2
)

= a(✓j + a)d(✓j + a� 1), j = 1, · · · , 2N

energy spectrum

E = �⇡(4a2 � 1)
2N+1X

j=1

[a1(izj � ia) + a1(izj + ia)]� c0
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• Patterns of zero roots

p

q

III

III

III

IV

IV

VVI

0.5-0.5

0.5

Figure 1: The distribution of z̄-roots at the ground state in the upper p � q̄ plane.
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Figure 2: Pattern of z̄-roots at the ground state in regime I with 2N = 8. The blue stars

indicate z̄-roots for {✓̄j = 0} and the red circles specify z̄-roots with the inhomogeneity

parameters {✓̄j = 0.1(j � N � 0.5)}.

In the regime I, where 0  p < 1

2
, 0  q̄ < 1

2
, all the z̄-roots form 2N � 2

conjugate pairs as {z̄j ⇠ z̃j ± i |j = 1, · · · , 2N � 2} with real {z̃j}, two boundary
conjugate pairs {±i(|p|+ 1

2
),±i(|q̄|+ 1

2
)} and two symmetrical real roots

z̄± = ±↵.
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Taking derivative

ln |4|+
2N�1X

l=1


ln |✓̄j+ā�z̃l+

3i
2
|+ln |✓̄j+ā�z̃l+

i
2
|+ln |✓̄j+ā�z̃l�

i
2
|+ln |✓̄j+ā�z̃l�

3i
2
|
�

+ln |(✓̄j+ā�↵+
i
2
)(✓̄j+ā�↵� i

2
)|+ln |(✓̄j+ā+↵+

i
2
)(✓̄j+ā+↵� i

2
)|

+ln |(✓̄j+ā�i |p|)(✓̄j+ā+i |p|)|+ln |(✓̄j+ā�i |p|�i)(✓̄j+ā+i |p|+i)|

+ln |(✓̄j+ā�i |q̄|)(✓̄j+ā+i |q̄|)|+ln |(✓̄j+ā�i |q̄|�i)(✓̄j+ā+i |q̄|+i)|

=ln |(✓̄j+ā+i)(✓̄j+ā�i)|�ln |((✓̄j+ā)+
i
2
)((✓̄j+ā)� i

2
)|

+ln |(✓̄j+ā+ip)(✓̄j+ā�ip)|+ln |((1+⇠2)
1

2 (✓̄j+ā)+iq)((1+⇠2)
1

2 (✓̄j+ā)�iq)|

+

2NX

k=1

[(ln |(✓̄j�✓̄k+i)(✓̄j�✓̄k�i)|+ln |(✓̄j�✓̄k+2ā+i)(✓̄j�✓̄k+2ā�i)|]

where ā = �ia
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In the thermodynamic limit,

2N

Z 1

�1
[b1(u + ā� z̃) + b3(u + ā� z̃)]⇢(z̃)dz̃ + b1(u + ā+ ↵) + b1(u + ā� ↵)

= 2N

Z 1

�1
[b2(u � ✓̄) + b2(u + ✓̄ + 2ā)]�(✓̄)d ✓̄ + b2(u + ā)� b1(u + ā)

�b2|p|+2(u + ā)� b2|q̄|+2(u + ā)

By using the Fourier transformation, the solution of z̃-roots density is

⇢̃(k) = [4Nb̃2(k) cos(āk)�̃(k) + b̃2(k)� b̃1(k)� b̃2|p|+2(k)

�b̃2|q̄|+2(k)� 2b̃1(k) cos(↵k)]/[2N(b̃1(k) + b̃3(k))]

From now on, we use �(✓) = �(✓).
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• The ground state energy

Eg1 = N(4a2 � 1)

Z 1

�1
[ã1(k)� ã3(k)] cos(āk)⇢̃(k)dk � c0

�(4a2 � 1)
h |p|
a2 � p2

� |p|+ 1

a2 � (|p|+ 1)2
+

|q̄|
a2 � q̄2

� |q̄|+ 1

a2 � (|q̄|+ 1)2

i
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• Boundary energy

Eb1 = Eg1 � Ep

Eb1 = eb(p) + eb(q) + eb0,

eb(p) =
(4a2 � 1)

4

Z 1

�1
(1� e

�|k|) cosh(ak)
e
�|pk|

e�|k|/2 cosh (k/2)
dk ,

eb(q) =
(4a2 � 1)

4

Z 1

�1
(1� e

�|k|) cosh(ak)
e
�|(q/

p
1+⇠2)k|

e�|k|/2 cosh (k/2)
dk ,

eb0 =
(4a2 � 1)

4

Z 1

�1
(1� e

�|k|) cosh(ak)
e
�|k| � e

�|k|/2

e�|k|/2 cosh (k/2)
dk .

eb(p) and eb(q) are the contributions of left and right boundaries, respectively.
eb0 exactly equals to the surface energy induced by the free boundaries.

We also find that the expression of surface energies in the rest regimes are the
same. The reason is that the bare contributions of the boundary conjugate pairs
to the ground state energy are exactly canceled by those of the back flow of
continuum root density.
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Figure 3: (a) The surface energy Eb versus the boundary parameter p. (b) The surface

energy eb(p) versus the boundary parameter p. (c) The surface energy Eb versus the

boundary parameter ⇠. (d) The surface energy eb0 versus a.
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• Elementary excitations

Type I: breaking one conjugate pair and putting the corresponding zero roots into
the real axis.

Type II: the zero roots forming the conjugate pairs on the imaginary axis with
more larger imaginary parts ± ni

2
(n > 2).
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Figure 4: (a) The distribution of zero roots for {✓̄j = 0} at the ground state (blue

asterisks) and at the first kind of excited state (red circles) with 2N = 8, a = 0.66i ,
p = 1.2, q̄ = 0.7 and ⇠ = 1.2. (b) The excited energies �e1 versus z̄1 in the

thermodynamic limit.
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The non-Hermitian Bose-Hubbard model

• Fermi-Hubbard Model: strongly correlated electronic systems

H = �t

NX

j=1

X

�=",#
(c†j,�cj+1,� + h.c .) + U

NX

j=1

nj,"nj,#

1968, Lieb and Wu, Phys. Rev. Lett. 20, 1445
Critical Metal-Insulator transition: Uc = 0
• Bose-Hubbard model

H = �t

NX

j=1

(c†j cj+1 + h.c .) + U

NX

j=1

nj(nj � 1)

Lieb-Liniger model

H = �
NX

j=1

@2

@x2j
+ c

NX

i<j

�(xi � xj)

many applications in the cold atomic systems
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• Integrable non-Hermitian Bose-Hubbard model with unidirectional hopping

H = �t

N�1X

j=1

(b†j bj+1 + ✏b†Nb1) +
U

2

NX

j=1

nj(nj � 1)

b
†
j and bj are bosonic creation and annihilation operators. nj = b

†
j bj is the

number of bosons on site j and M =
PN

j=1
nj is number of total particles. N is

the number of sites. ✏ is the boundary term parameter.

This model is an unstable non-Hermitian model (N > 2) which all particles only
hop to one side. Significantly, when N = 2 and ✏ = 1, the model is Hermitian and
reduces to the well-know integrable Bose-Hubbard dimer.
Reference: M. Zheng, Y. Qiao, Y. Wang, J. Cao, and S. Chen, Phys. Rev. Lett.
132, 086502 (2024).
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• Integrability
The model is constructed by the spin-boson Lax operator

Lj(u) =

✓
u � nj gbj

gb
†
j �g

2

◆
, R12(u) =

0

BB@

u � 1 0 0 0
0 u �1 0
0 �1 u 0
0 0 0 u � 1

1

CCA

where g is a constant. The L operator satisfies the Yang-Baxter equation

R12(u � v)L̂1(u)L̂2(v) = L̂2(v)L̂1(u)R12(u � v)

Monodromy matrix,

T (u) =

✓
A(u) B(u)
C (u) D(u)

◆
= L1(u)L2(u) · · · LN(u)

In order to characterize the twisted boundary coupling, we define a diagonal
matrix K

K =

✓
1 0
0 ✏

◆

the transfer matrix is

t(u) = tr [T (u)K ] = A(u) + ✏D(u)

which satisfies the relation [t(u), t(v)] = 0, for any choice of u and v .
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From the directly calculation, we get

t(u) = A(u) + ✏D(u) = u
N + C1u

N�1 + C2u
N�2 + · · · ,

C1 = �
NX

j=1

nj ,

C2 =
1

2

NX

i 6=j

ninj + g
2(

N�1X

j=1

b
†
j bj+1 + ✏b†Nb1).

the non-Hermitian Hamiltonian

H =� t

g2
(C2 �

1

2
(C 2

1 + C1))

=� t

N�1X

j=1

(b†j bj+1 + ✏b†Nb1) +
t

2g2

NX

j

nj(nj � 1)
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• Exact solution
By using the algebraic Bethe ansatz method, we obtain the eigenvalues of the
transfer matrix

⇤(u) = u
N

MY

j=1

u � µj � 1

u � µj
+ ✏(�g

2)N
MY

j=1

u � µj + 1

u � µj

and the Bethe ansatz equations

µN
j

✏(�g2)N
=

MY

j 6=l

µj � µl + 1

µj � µl � 1
✏ 6=0

Expanding ⇤(u) and comparing with the polynomial of t(u), we get

C1 = �M, C2 = �
X

j=1

µj �
M(M � 1)

2

So the eigenvalue of Hamiltonian

E = � t

g2
(C2 �

1

2
(C 2

1 + C1)) =
t

g2

X

j

µj
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Define U = t/g2 and �j = Uµj , the BAEs read

�N
j = ✏(�t)N

MY

l 6=j

�j � �l + U

�j � �l � U
(1)

and the eigenvalue of Hamiltonian is

E =
MX

j=1

�j .

Taking the logarithm of (1), we have

N ln(
�j
�t

) = i

MX

l 6=j

⇥(
�iU

�j � �l
) + i2⇡Ij .

Here ⇥(z) ⌘ 2arctan(z), and Ij is the quantum number.

In the fermion Bethe ansatz equations, the quantum number Ij of each particle
shall not be equal. Here the {Ij |j = 1, 2, . . . ,M} could be equal.
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• Numerical check
The Hamiltonian is non-Hermitian, thus the energies are complex.
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Figure 5: The numerical results of the eigenvalues of NHBH model. The blue points are

obtained by directly solving the BAEs (1) and the data marked by purple asterisk are

results from exact diagonalization with U = 0.001 ✏ = 1 (A), U = 1 ✏ = 1 (B), U = 1

✏ = 0.5 (C) and U = 10 ✏ = 1 (D). Common parameters: N = 3, M = 3, t = 1.
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• Superfluid-Mott like phase transition

We define the ground state as the eigenstate whose eigenvalue has the lowest real
part. To the present model, the ground state energy is real.

• filling: N = M

1. If U is small, the system is in the gapless superfluid phase.
If U is large, the system is in the gapped Mott-insulator phase. That is every

site is occupied by one boson due to the strong repulsive interaction.
There is a Mott-superfluid transition for ceratin value of interaction.

2. Now, we determine the value of phase transition point. We define

µ+ = EM=N+1 � EM=N

µ� = EM=N � EM=N�1
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• Superfluid-Mott like phase transition with 2N = M.

Figure 6: Numerical results of the trajectory of Bethe roots with kinetic energy term

coe�cient t varying from 0.4 to 0.02 for N = 10, M = 20, U = 1 (A),

N = 20, M = 40, U = 1 (B). The numerical results of the eigenvalue E versus t/U
and the second derivative of E/N with respect to t/U with N = 10, M = 20 (a1,a2),

N = 20, M = 40 (b1,b2).
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• The non-Hermitian skin e↵ect (NHSE)

When there is no interaction, the NHBH model is the single particle system with
bosons hopping only to one side. It is easy to imagine that in this case if the
boundary parameter ✏ 6= 1, the NHSE will appear.

Then if U is not zero, how will the NHSE of this system change?
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The wave function is

 =
NX

x1,x2,...,xM=1

 (x1, . . . , xM)b†x1b
†
x2 . . . b

†
xM |0i

 (x1, . . . , xM) =
X

p,q

Ap(q) exp[i
MX

j=1

kpj xqj ]✓(xq1  xq2  · · ·  xqM )

= (�1)M
X

p,q

Ap(q)
MY

j=1

�
xqj
pj ✓(xq1  xq2  · · ·  xqM )

The relation between Ap is

Ap1...pi+1pi ...pM

Ap1...pi pi+1...pM

= S(kpi , kpi+1
)

and the scattering matrix of the system is

S(kpi , kpi+1
) =

�pi+1 � �pi + U

�pi+1 � �pi � U
.

The solution of BAEs (1) can completely determine the wave function.
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• For the case that M = N, there is only one state with eigenvalue close to 0
which is |1, 1, . . . , 1i, so that the NHSE will disappear. The particle number of the
ground state is almost evenly distributed.

• When N 6= M, all state will have NHSE when U ! 1.
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Reference: C. Ekman and E. J. Bergholtz, Liouvillian skin e↵ects and fragmented
condensates in an integrable dissipative Bose-Hubbard model, arXiv:2402.10261.
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The topological quantum spin ring

The XXZ spin chain with anti-periodic boundary condition is a typical quantum
integrable models without U(1) symmetry.

The Hamiltonian is

H = �
NX

j=1

h
�x
j �

x
j+1 + �y

j �
y
j+1

+ cosh ⌘�z
j �

z
j+1

i
.

• Anti-periodic boundary conditions: �↵
N+1

= �x
1
�↵
1
�x
1
(↵ = x , y , z).

• The twisted bond could be shifted smoothly in the system with the spectrum of
the Hamiltonian unchanged.
• Z2-symmetry: H̃j = U

x
j HU

x
j , U

x
j =

Qj
l=1

�x
l , [H,Ux ] = 0.
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The Hamiltonian is constructed as

H = �2sinh ⌘
@ ln t(u)

@u

����
u=0

+ N cosh ⌘,

where

t(u) = tr0{�x
0R0,N(u) · · ·R0,1(u)} = tr0

✓
C (u) D(u)
A(u) B(u)

◆
.

The R-matrix

R0,j(u) =
sinh(u + ⌘) + sinh u

2 sinh ⌘
+

1

2
(�x

j �
x
0 + �y

j �
y
0
)

+
sinh(u + ⌘)� sinh u

2 sinh ⌘
�z
j �

z
0 ,

From the Yang-Baxter relation, one can prove that [t(u), t(v)] = 0!
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Conserved charges

Due to the topological boundary, the model possesses neither translational
invariance nor U(1) symmetry.

Basic properties of the transfer matrix:

t(0) = �x
1P1,NP1,N�1 · · ·P1,2, t2N(0) = 1,

is a conserved and represents the shift operator in the topological manifold.

Topological momentum: Pq = �i ln t(0). The eigenvalues of Pq are

k =
⇡l

N
mod {⇡}, l = {�N,�N + 1, · · · ,N � 1}.
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String charge:

Mq =
1

2
(l+q + l�q ) =

1

4
e
� (N�1)⌘

2 lim
u!1

(2 sinh ⌘e�u)N�1t(u),

where

l±q =
1

2

NX

j=1

e
⌥ ⌘

2

PN
k=j+1

�z
k�±

j e
± ⌘

2

Pj�1

k=1
�z
k ,

are two generators of the quantum group associated with the model.
The eigenvalues of the operator Mq is given by

Mq =
1

4
sinhN�1 ⌘ ⇤0 e

�
PN�1

k=1
zk .

� For generic ⌘, the Mq is not an U(1) charge.

| When ⌘ ! 0, the model tends to an isotropic spin chain and the U(1)

symmetry recovers with Mq =
PN

j=1
�x
j /2, which is just the U(1) charge.
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t-W relation
Using the fusion techniques, we have

t(u)t(u � ⌘) = tr1,2{P(�)

1,2 �
x
1�

x
2T2(u)T1(u � ⌘)P(�)

1,2 }

+tr1,2{P(+)

1,2 �
x
1�

x
2T2(u)T1(u � ⌘)P(+)

1,2 }.

Thus the t �W relation is

t(u)t(u � ⌘) = �a(u)d(u � ⌘)⇥ id+ d(u)W(u),

where W(u) is an operator-valued degree N trigonometric polynomial of u.
Meanwhile, W(u) and t(u) commute with each other

[W(u), t(u)] = 0,

which indicates they have common eigenstates.
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Functional relations

⇤(u)⇤(u � ⌘) = �a(u)d(u � ⌘) + d(u)W (u). (2)

Parameterization:

⇤(u) = ⇤0

N�1Y

j=1

sinh(u � zj +
⌘

2
), W (u) = W0 sinh

�N ⌘
NY

l=1

sinh(u � wl).

An important fact is that (2) is a degree 2N polynomial equation and thus gives
2N + 1 independent equations for the coe�cients, which determines the N � 1 zj

roots, N wl roots and the two constants ⇤0 and W0 completely.

Putting u = zj � ⌘/2 in (2), we obtain new Bethe ansatz equations

sinhN(zj �
3⌘

2
) sinhN(zj +

⌘

2
) = W0 sinhN(zj �

⌘

2
)

NY

l=1

sinh(zj � wl �
⌘

2
). (3)

Putting u = wl in (2), we obtain

⇤
2

0

N�1Y

j=1

sinh(wl � zj +
⌘

2
) sinh(wl � zj �

⌘

2
) = � sinh

�2N ⌘ sinhN(wl + ⌘) sinhN(wl � ⌘).
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Since ⇤(u) is a degree N � 1 trigonometric polynomial of u, the leading terms in
the right hand side of (2) must be zero. Therefore, W 2

0
= 1.

Selection rule: The coe�cient ⇤0 can be determined by putting u = 0 in (2) as

⇤20

N�1Y

j=1

sinh(zj +
⌘

2
) sinh(zj �

⌘

2
) = (�1)N�1.

The eigenvalue of the Hamiltonian can be expressed as

E = 2 sinh ⌘
N�1X

j=1

coth(zj �
⌘

2
) + N cosh ⌘.
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Distribution of roots
From the intrinsic properties of the R-matrix, for imaginary ⌘ we have

t†(u) = (�1)N�1t(u⇤ � ⌘), ⇤(u) = (�1)N�1⇤⇤(u⇤ � ⌘).

The above relation implies that if zj is a root, z⇤j must also be a root!
Therefore, zj can be classified into 3 sets:
(1) real zj ;
(2) Imzl = �i⇡/2 (this is because its conjugate shifted by i⇡ becomes itself);
(3) complex conjugate pairs.

W ⇤(u⇤) = (�1)NW (u) indicates if wl is a root of W (u), w⇤
l must also be a root.
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Ground state
At the ground state, all roots zj and wl take real values around zero symmetrically.
Taking the logarithms of (3) and its complex conjugate we have

2✓1(zj)� ✓3(zj) =
4⇡Ij
N

� 1

N

NX

l=1

✓1(zj � wl), (4)

and

ln |⇤0 sinh(zj �
3⌘

2
)| = 1

N

NX

l=1

ln | sinh(zj � wl �
⌘

2
)|, (5)

where Ij denote the quantum numbers (integers or half odd integers depending on
the parity of N) associated with the root zj and ✓n(x) = 2 cot�1(coth x tan n�

2
).

Ij =

⇢
�N � 2

2
,�N � 4

2
, · · · , N � 4

2
,
N � 2

2

�
.
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In the thermodynamic limit N ! 1, we define the density of z-roots and the
density of z-holes per unit site as ⇢(z) and ⇢h(z), the density of w -roots as �(w),
respectively.

Taking the continuum limits of (4) and (5) we have

2a1(z)� a3(z) = 2⇢(z) + 2⇢h(z)� a1 ⇤ �(z),

b3(z) = b1 ⇤ �(z),

where an(z) = ✓0n(z)/(2⇡), bn(z) = ln0 | sinh(z � n⌘/2)|/⇡ and ⇤ indicates
convolution.

With Fourier transformation we readily have

⇢(z) + ⇢h(z) =
2 cosh(

⇡z
⇡�� ) sin(

⇡�
2⇡�2� )

(⇡ � �)[cosh( 2⇡z
⇡�� ) + cos(

⇡(⇡�2�)
⇡�� )]

.

Here ⇢h(z) is non-zero only in the range |z | > D ( D ! 1 in the thermodynamic

limit) with N
R1
D ⇢h(z)dz = 1/2 and N

R �D
�1 ⇢h(z)dz = 1/2.
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The existence of the hole density is due to the fact that the total number of
roots must be N � 1 while the dimension of the Brillouin zone is N.

However, the hole separates into two halves due to the topological restriction
and each half hole locates at one edge of the spectral space.

Clearly, the two half-holes contribute two half zero modes (carrying zero
energy).

The ground state energy density reads

eg = � sin �

Z
cosh[

(⇡�2�)⌧
2

] tanh[
(⇡��)⌧

2
]

sinh(
⇡⌧
2
)

d⌧ + cos �.
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Elementary excitations I

The first kind of elementary excitations is described by a single root locating
in the axis Imz = �i⇡/2 and all the other roots remaining in the real axis.

Accordingly, two w -roots form a conjugate pair w± = � ±m⌘/2 with � and
m two real numbers, and all the other w -roots keep real.
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Elementary excitations II and III

References of t �W scheme:
Phys. Rev. B 102, 085115 (2020); Phys. Rev. B 103, L220401 (2021); Results
Phys. 29, 104721 (2021); JHEP 11, 044 (2021); JHEP 07, 133 (2021).
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Concluding remarks and perspective

• Non-Hermite physics is a hot topic recently. Most results are based on the single
particle systems. By using the quantum inverse scattering method, we can
construct some non-Hermite integrable models. Then we can study the correlation
e↵ects in the non-Hermite systems exactly.

• Besides the quantum inverse scattering, one can also use the fusion technique to
construct new quantum integrable spin chain or the strongly correlated electronic
model. The Mott insulator to superfluid transition at finite critical interaction is
very interesting.

• O↵-diagonal Bethe ansatz
1. spin chain, electronic model, statistical model, High ranks (An, Bn, Cn, Dn)
2. energy spectrum, eigenstates, thermodynamic limit, surface energy and
elementary excitation, thermodynamic quantities at finite temperature
3. G2 exceptional Lie algebra

Thank you for your attention!
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