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Recent and on-going research

Quantum metrology and supersonic flutter 
1. Wan, Shi, Guan,  Magnonic sensor in Cavity,  Phys. Rev. B 109, Letter 041301 (2024)
2. Shi, Guan and Yang, Growth limit of Fisher information,  Phys. Rev. Lett. 132, 100803 (2024)
3. Zhang, Jiang, Lin, Guan,  Quantum supersonic flutter, Phys. Rev.  Lett. in refereeing 

where !! = # $" + $# .

What is the role of bipartite entanglement in 
partially accessible metrological schemes?

entangled after the sensing process. This prompts the
central question: whether many-body interactions can
break the SNL. This question is also intimately related
to recent studies on operator growth and quantum chaos in
quantum many-body systems [40–44].
To answer this question, we derive a universal bound

governing the growth of QFI over time, which can
characterize the role of quantum entanglement in informa-
tion scrambling, operator growth, and quantum chaos. We
apply our bound to dynamic quantum sensing protocols
with time-independent many-body Hamiltonians as shown
in Fig. 1(a) and estimate the bound using the celebrated
Lieb-Robinson bound [45–48] for quantum many-body
systems with local interactions. We find that it is impossible
to surpass the SNL with local interactions. This observation
holds not only for separable initial states but also extends to
cases where the initial state is the nondegenerate ground
state of a locally gapped Hamiltonian—a state feasible for
experimental preparation through cooling processes.
Therefore, if only separable states are accessible in experi-
ments, nonlocal or long-range interactions are essential to
beat the SNL and bring real quantum advantage in many-
body quantum metrology. We exemplify our findings in
magnetometry with the short-range transverse-field Ising
(TFI) model, the chaotic Ising (CI) model, and the long-
range Ising (LRI) model.
Universal bound on the growth of the QFI.—We con-

sider the following sensing Hamiltonian:

HλðtÞ ¼ H0λðtÞ þH1ðtÞ; ð1Þ

where H0λðtÞ is a simple Hamiltonian encoding the
estimation parameter λ, and H1ðtÞ involves interactions
among sensors induced by either intrinsic interactions or
external coherent controls. In the formal case,H1 is usually
time independent, while in the later case, H1ðtÞ becomes
time dependent. The generator for sensing λ [12,49] is
given by

GðtÞ ¼
Z

t

0
½∂λHλðτÞ&ðHÞdτ; ð2Þ

where an operator in the Heisenberg picture is defined as
OðHÞðtÞ ¼ U†ðtÞOðSÞðtÞUðtÞ. The QFI is determined by
the variance of GðtÞ over the initial state jψ0i, i.e.,

IðtÞ ¼ 4Var½GðtÞ&jψ0i: ð3Þ

Optimal control theory has been proposed to simultane-
ously optimize the initial state jψ0i andH1ðtÞ, resulting in a
bound IðtÞ ≤ 4

!R
t
0 k∂λH

ðSÞ
λ ðτÞkdτ

"2 [14,49–51]. Here, the
seminorm k · k denotes the spectrum width of an operator,
i.e., the difference between its maximum eigenvalue and
minimum eigenvalue.
By taking the derivative of Eq. (3) and applying the

Cauchy-Schwarz inequality, we derive a universal bound
[52,53] that characterizes the growth of QFI:

d
ffiffiffiffiffiffiffiffi
IðtÞ

p

dt
≤ ΓðtÞ≡ 2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Var

!
½∂λHλðtÞ&ðHÞ

"
jψ0i

q
: ð4Þ

The saturation condition is provided in the Supplemental
Material (SM) [52]. Alternatively, one can rewrite

ΓðtÞ ¼ 2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Var

!
∂λH

ðSÞ
λ ðtÞ

"
jψðtÞi

q
; ð5Þ

where jψðtÞi ¼ UðtÞjψ0i.
It is worth noting that Eq. (4) universally holds for all

initial states, including time-independent and driven quan-
tum systems. ΓðtÞ depends on the control Hamiltonian
H1ðtÞ and the initial state jψ0i. Optimizing ΓðtÞ over all
possible unitary dynamics and initial states yields
ΓðtÞ ≤ 2k∂λH

ðSÞ
λ ðtÞk. By combining this bound with

IðtÞ ≤
!R

t
0 ΓðτÞdτ

"
2, which can be obtained by integrating

both sides of Eq. (4), one immediately reproduces the
bound given in previous works [14,49–51]. Compared to
these studies, our bound (4) provides a feasible approach to
study the scaling behavior of the QFI when the initial state
jψ0i is limited to a specific set of states.
SNL for short-range local interactions.—We will show

the close connection between our bound (4), depicting QFI
growth, and the Lieb-Robinson bound, which characterizes
operator complexity in quantum many-body with short-
range local interactions. We consider time-independent
Hamiltonians as follows:

FIG. 1. Comparison between our protocol (a) with the protocol
in Ref. [17] (b). In our protocol (a), the information of the
estimation parameter is encoded into the many-body quantum

states through the many-body dynamics UλðtÞ ¼ e−iðλ
P

i
hXiþH1Þt

while in Ref. [17], the encoding dynamics given by Uλ ¼
e−iλ

P
i
hXi with Xj ¼ fjg. In our protocol, the initial state is

chosen to be either a separable state or the nondegenerate ground
states of a gapped and local Hamiltonian while in Ref. [17] the
initial state is prepared through the many-body dynamics U0ðtÞ.
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Growth of quantum Fisher information The injected particle never comes 
to a full stop,  without  a 
relaxation—Quantum flutter.



1D Hubbard model: from quantum liquids to 
quantum cooling and quantum transport

1. Luo, Pu, Guan, Phys. Rev. B 107, Letter 201103 (2023);
2. Luo, Pu, Guan, 51 pages, arXiv: 2307.00890;  submitted to 
Report on Progress in Physics
3. Luo, Pu, Guan, Spin and charge Drude weights in 1D Hubbard 
model, in preparation 

Quantum dynamical correlation functions: From coherent Luttinger liquid  to Luther-Emery

1. Senaratne, et. al., Pu, Guan*, Hulet*, Determinant observation 
of S-C separation,   Science 376, 1305 (2022)
2. Aashish, et. al., Giamarchi, Pu, Guan, Hulet, Measurement of 
the Luther-Emery liquid, 2024

17 JUNE 2022 • VOL 376 ISSUE 6599    1281SCIENCE   science.org

how previously transcribed DNA 
rewraps the nucleosome. The 
finding provides a structural 
basis of how nucleosomes, and 
consequently epigenetic marks, 
are retained during transcrip-
tion. —DJ

Science, abo3851, this issue p. 1313

CORONAVIRUS

First off the COVID block
The severe acute respira-
tory syndrome coronavirus 2 
(SARS-CoV-2) pandemic has 
been characterized by waves of 
transmission initiated by new 
variants replacing older ones. 
Given this pattern of emer-
gence, there is an obvious need 
for the early detection of novel 
variants to prevent excess 
deaths. Obermeyer et al. have 
developed a Bayesian model to 
compare relative transmissibil-
ity of all viral lineages. Using 
this model, emerging lineages 
can be spotted together with 
the mutations that contribute 
toward transmissibility, not 
only in Spike, but also in other 
viral proteins. The model can 
prioritize lineages as they 
emerge for public health con-
cern. —CA

Science, abm1208, this issue p. 1327

MOLECULAR BIOLOGY

How to make 
selenoproteins
In all domains of life, the 
essential trace element 
selenium is incorporated into 
selenoproteins as the amino 
acid selenocysteine during 
protein translation. Specialized 
protein and RNA factors assist 
selenocysteine transfer RNA 
to reinterpret specific UGA 
codons, not as a signal to end 
protein synthesis, but rather 
as a sign for selenocysteine 
insertion. Hilal et al. used cryo–
electron microscopy to trap 
and visualize the mammalian 
ribosome as it decodes the 
selenocysteine UGA codon. An 
unforeseen extended network 
of interactions between key 
molecular players facilitates 
the recoding event, thereby 
providing a basis for further 

TRANSCRIPTION

When Pol II meets 
nucleosome
Eukaryotic cells organize their 
large genomes into a compacted 
structure called chromatin. 
The condensed structure of 

chromatin, with its fundamental 
unit, the nucleosome, repre-
sents a challenge to nucleic 
acid–transacting machines 
including RNA polymerase II 
(Pol II), the enzyme responsible 
for the transcription of most 
protein-coding genes. How RNA 

Pol II overcomes nucleosomes 
without disrupting chromatin 
organization remains unknown. 
Using cryo–electron microscopy, 
Filipovski et al. provide struc-
tural snapshots of a complex 
between mammalian RNA Pol 
II and a nucleosome that show 

I N  S C I E N C E  J O U R NA L S

RESEARCH
Edited by 
Michael Funk

Artist’s conception of a spin excitation propagating through a one-dimensional gas of fermionic atoms

QUANTUM GASES

Separating spin and charge

I
n one-dimensional fermionic systems, spin and charge excitations can decouple from 
each other. This so-called spin-charge separation has been detected in solids and cold-
atom systems held in optical lattices. Senaratne et al. observed spin-charge separation in 
one-dimensional Fermi gases of lithium atoms in the absence of a lattice structure within 
the gas. The researchers were able to excite the spin and charge excitation modes inde-

pendently from each other and measure their velocities as a function of the strength of the 
atomic interactions. —JS   Science, abn1719, this issue p. 1305
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Hubbard model with cold  atoms
A paradigm of physics  in condensed matter:
• Electronic properties of solids with narrow bands
• Band magnetism
• Metal-Mott insulator transition, 
• Fractional excitations, FFLO pairing
• …

Hart, et al. Nature 519, 211 (2015)
Boll et al. Science 353, 1257 (2016)
Parsons et al. Science 353, 1253 (2016)
Cheuk, et al. Science 353, 1260 (2016)
Cheuk, et al. PRL 116, 235301 (2016)
Hilker, et al. Science 357, 484 (2017)
Cocchi, et al, Phys. Rev. X, 7, 031025 (2017)
Chiu, et al, Science 365, 251(2019)} 
Hart, et al. Nature 565, 56 (2019) 
Vijayan, et. al., Science, 367, 186 (2020)

(a) (b) (c) (d)

The Hubbard model has also become increasingly
important in
• cold atoms
• quantum metrology
• quantum information

Nichols et. al., Science 363, 383 (2019)
Brown, et. al. Science 363,379 (2019)
Shao, et. al. ArXiv:2402.14605 (2024)
Wei, et. al. Science 376, 716 (2024)



I.   1D Hubbard model (Dynamical correlation)

       Spin coherent and incoherent TLLs, critical scaling functions

II. Interaction driven criticality and Contact (Caloric effect)

     Contact susceptibility and quantum cooling in a lattice

III.  Quantum transport

          Spin and charge Drude weights at zero and finite temperature

IV.  Conclusion and discussion

Outline



I.   1D Hubbard model: A prototypical integrable model 

Lieb, Wu PRL 20 , 1445 (1968)

The model has been realized  with 
ultracold atoms in lab 

!! = −$

"#$

%

$

&#↑↓

%",&
*	 %"*$,& + %"*$,&

*	 %",&

+'$

"#$

%

(1 − 2+"↑)(1 − 2+"↓)

!,- = !! − - ./ − 20 12
.

l 3"& and 3"&
* ∶ annihilation and creation operators 

of electrons with spin 5 at site 6
l +"& = 3"&

*3"&

l ./ = ∑"#$
% (+"↑++"↓)

l u < 0 (u > 0): on-site attractive (repulsive) 
interaction 
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2
*
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(

*
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Spin SU(2) symmetry 

Eta-pairing Symmetry 
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- ,	 5# =
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2
( 78 − 9)

51 =*
%&'

(

(−1)%.' +%,↑+%,↓,	

Essler, Frahm, Gohmann,Klumper, Korepin, 
The One-Dimensional Hubbard Model 
(Cambridge University Press,2005). 

Rich Symmetries: ':(2)⨂':(2)/=, ; : 1 ⨂: 1 … 



Exact Lieb-Wu Equations – Bethe ansatz: 
Energy and Momentum 

String hypothesis for ! > #: 
9: real quasimomentum root :/ 	

Excitations at IV phase in Hubbard model

Jiajia Luo

April 27, 2022

1 dispersion

FIG. 1. dispersion relation in extended area.

2 basic knowledge

Let Me,Mn,M 0
n denote the number of k,⇤, k�⇤ string. Therefore, total particle number N and spin

down electron number M can be read:

M =
1X

n=1

n
�
Mn +M 0

n

�

N = Me +
1X

n=1

2nM 0
n

(1)

In terms of string solutions, they satisfy so-called Takahashi’s equations:

kjL = 2⇡Ij �
1X

n=1

MnX

↵=1

✓

✓
sin kj � ⇤n

↵

nu

◆
�

1X
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�
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N�2M 0X
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✓
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↵ � ⇤0m

�

u

!
.

(2)

where Ij , Jn
↵ , J

0n
↵ are integer or half-odd integers, which rely on the odevity of string number,

Ij is

(
integer if

P
m (Mm +M 0

m) is even

half-odd integer if
P

m (Mm +M 0
m) is odd

(3)

1
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Length-n	9 − C strings (Green dots):
2n electrons form a bound state  

Length-n	C strings(Orange dots):
n-magnons form a bound state  

Lieb, Wu PRL 20 , 1445 (1968)

@:	Spin	Bound	state	Λ − Λ	String O2 

P − @: charge bound state O2
3

Q$
' = R − arcsin Λ$

34 + UV	W ;
Q$
, = arcsin Λ$

34 + (U − 2)V	W ;
Q$
5 = R − Q$

, ;
XXX

Q$
,41' = R − Q$

,41';
Q$
,4 = R − arcsin Λ$

34 − UV	W

Im YZ[ P6

\$
4,% = Λ$

34 + U − 2] + 1 V	W



5

and spin down electron number M read:

M =
1X

n=1

n (Mn +M 0
n
) ,

N = Me +
1X

n=1

2nM 0
n
.

(4)

FIG. 2: The string patterns of ⇤ strings (left configurations) and k � ⇤ strings (right configurations). The left ⇤ strings show
one length-1, two length-2 and one length-3 ⇤ strings. The right k � ⇤ strings involve one length-1 k � ⇤ string, two length-2
k � ⇤ strings and one length-3 k � ⇤ string.

For the ease of discussion, we choose to present the following Bethe ansatz equations and the TBA equations of the
1D repulsive Hubbard model, based on which, we will derive analytically physical properties of the model. In terms
of the string solutions, the real centers of these roots satisfy the so-called Takahashi’s forms of Bethe ansatz equations
[21]:
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(5)

where ✓(x) = 2 arctan(x) and ⇥nm is defined as

⇥nm(x) =

8
<
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The counting numbers Ij , Jn

↵
, J 0n

↵
are integer or half-odd integers, which rely on the odevity of string number,

Ij is

(
integer if

P
m
(Mm +M 0

m
) is even

half-odd integer if
P

m
(Mm +M 0

m
) is odd

, (7)

Jn

↵
is

(
integer if N �Mn is odd

half-odd integer if N �Mn is even,
, (8)

J 0n
↵

is

(
integer if L�N +M 0

n
is odd

half-odd integer if L�N +M 0
n
is even

. (9)

The classification of these quantum numbers will be needed for characterizing the excitations which will be presented
later.

Bethe ansatz equations for ground and excited states:

Luo, Pu, Guan, 51 pages, arXiv: 2307.00890



Thermodynamics Bethe ansatz equations 
• quantum many body systems
• microscopic state energy !!
• partition function 
  " = ∑!"#

$ %!e!
%&7/()8*)

• free energy ' = −),*+,"	
• challenge: finding new physics

M. Takahashi One-dimensional Hubbard model at finite temperature,  Progress of Theoretical Physics, 1972, 47(1): 69-82.

Equation of state 

Charge particle dispersion 

Spin wave bound states

Charge particle bound states

Real Q

Length-^ spin strings

Length-^ electron BS



half filled 
fully polarized

partially filled 
fully polarized 

partially filled  
partially polarized

Wilson ratio maps out T=0 phase diagram
Wilson ratio:    $_

`0 = a

b

cP1
d1e

f `0
g2/h

D -- susceptibility  
%3 -- specific heat 
T -- temperature   

F4,5 -- charge & spin Luttinger parameter

G4,5 -- charge and spin velocities 

For Luttinger liquid phases at T=0

Luo, Pu, Guan, PRB 107, L201103 (2023)
Luo, Pu, Guan, arXiv: 2307.00890

i9
:! ≈ fII:

IV:

V:

I, III:

i9
:! ≈ a(k;l< + k<l<;)/(k< + k;)

i9
:! ≈ mP<

i9
:! ≈ n

half filled 
partially polarized

New result



The spin-charge separation involves the elementary
excitations of 1D interacting fermions that dramatically
decompose into the two collective motions of bosons:
one solely carries charge, another solely carries spin.

Recati et. al. PRL 90, 020401 (2003) 
Hart, et al. Nature 565, 56 (2019) 
Vijayan, et al. Science, 367, 186 (2020)
He, Jiang, Lin, Hulet, Pu,  Guan, Phys. Rev. Lett.  125, 190401 (2020)

Microscopic origin  of the Spin-charge separation

See:	Giamarchi,	《Many-Body	Physics	in	one	dimension》

!! = −$
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Elemental Fractional Excitations  at 

Particle-hole

Fractional spinions 

Two fractional spinons:  
Δ'o=(N −	2M)/2=1
Fractional charge  holons:
 Δ1o = (N − L)/2 = 0

Length-1 Λ string
(Ground state)

Length-1 Λ string
(Two spinons)

Out of TLL

The system does not exist 
charge incoherent liquid! 



Removing a spin-down fermions

pq=, pr=	 = (−
s

f
,
s

f
)holon-spinon:

Fractional holon 

Fractional spinion 

Charge: excited
(one holon)

Spin: excited
(one spinon)

Fractional Excitations  

Spin-charge scattering
Rather than Separation!

Out of the TLL



Particle-hole

Fractional spinions 

Two fractional spinons:  Δ'o=1
Paticle-hole excitations: Δ1o = 0 

Length-1 Λ string
(Ground state)

Length-1 Λ string
(Two spinons)

Spin incoherent liquid condition:  
t<>?@ ≪ lAh ≪ t;BCDEF

Elemental Fractional Excitations  

New result 



TLL—Tomonaga-Luttinger liquid

Finite temperature: spin-coherent and spin–incoherent Luttinger liquids 
Zero temperature Finite temperature

QC — Quantum criticality
vG
w
= vG

" + h
H
#.'1

,
G#x

# − #I
h'/G#

z = 2, y = 1/2

zG = {|1
RyGxG
2

ΠG
, +

yG
2RxG

~K�G
, , Ä = +, Å

|É − É;| ≪ lAh



Spin incoherent liquid in 1D Hubbard model
Distinguishing TLL and SILL:

Near Bc from conformal field theory

Essler, Frahm, Göhman, Klümper and Korepin, the one-dimensional Hubbard model, Cambridge University Press, 2010

29

Fermi point A is expressed as A = (�"1(0)/⌘1)1/2. Using the definition of a0, see (90), we have a0 = �1(0) ⇡ �1(A)
and "

0

1
(A) = 2⌘1A, which renders

⇡2a0 (⌘1)
� 1

2 (�"1(0))�
1
2T

3

=
⇡2�1(A)T (⌘1)

1
2

3

1

⌘1(�"1(0))
1
2

=
⇡2�1(A)T

3⌘1A
=

⇡ · 2⇡�1(A)T

3"
0
1
(A)

=
⇡T

3vs
. (128)

This immediately gives an universal thermodynamic relation of the SILL

Cv ⇡ ⇡T

3

✓
1

vc
+

1

vs

◆
+

7⇡3T 3

40vs(�"1(0))2
+O(T 4). (129)

The result (129) is complementary to the correlation function in SILL, which will be studied below.
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lastly, Dα represents fermions that are backscattered from one
Fermi point to the other. They are restricted by the condition

Dc ≡ "Ns + "Ns

2
(mod1), Ds ≡ "Nc

2
(mod1). (90)

We want to find the asymptotic behavior of the general two-
point correlation functions for the operators O(x,t), namely,

〈O(x,t)O†(0,0)〉. The operators can be written as a linear
combination of primary fields with conformal dimensions
"±

c,s and their descendent fields. Noting that the correlation
functions for fields with different conformal dimensions are
zero, we can express the correlation functions at T = 0 and
T > 0 respectively as

〈O(x,t)O†(0,0)〉 =
∑

n

A("Nc,s,N
±
c,s ,Dc,s)

exp[−2iDc(kF↑ + kF↓)x] exp(−2iDskF↓x)

(x − ivct)2"+
c (x + ivct)2"−

c (x − ivs t)2"+
s (x + ivs t)2"−

s

(91)

and

〈O(x,t)O†(0,0)〉T =
∑

n
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±
c,s ,Dc,s) exp[−2iDc(kF↑ + kF↓)x] exp(−2iDskF↓x)

×
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πT

vc sinh[πT (x − ivct)/vc]

}2"+
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πT

vc sinh[πT (x + ivct)/vc]

}2"−
c

×
{

πT

vs sinh[πT (x − ivs t)/vs]

}2"+
s
{

πT

vs sinh[πT (x + ivst)/vs]

}2"−
s

, (92)

where n denotes the set of quantum numbers

n = ("Nc,s,N
±
c,s ,Dc,s), (93)

which are determined by the condition given in (90) and the
selection rules for the form factors while performing a spectral
decomposition of the correlation functions.33

Let us consider the correlation functions of operators, which
are written in terms of the field operators ψσ (x,t) where σ =↑
, ↓. They obey the canonical commutation relations

{ψσ (x,t),ψ†
σ ′(x,t ′)} = δσσ ′δ(x − x ′),

(94)
{ψσ (x,t),ψσ (x,t ′)} = {ψ†

σ (x,t),ψ†
σ (x,t ′)} = 0.

Here, we consider the following correlation functions: (i) one-
particle Green’s function:

Gσ (x,t) = 〈ψσ (x,t)ψ†
σ (0,0)〉, (95)

(ii) charge density correlation function:

Gnn(x,t) = 〈n(x,t)n(0,0)〉, (96)

where

n(x,t) = n↑(x,t) + n↓(x,t), nσ (x,t) = ψ†
σ (x,t)ψσ (x,t),

(97)

(iii) longitudinal spin-spin correlation function:

Gz(x,t) = 〈Sz(x,t)Sz(0,0)〉, (98)

where

Sz(x,t) = 1
2 [n↑(x,t) − n↓(x,t)]. (99)

(iv) transverse spin-spin correlation function:

G⊥(x,t) = 〈S+(x,t)S−(0,0)〉, (100)

where

S+(x,t) = ψ
†
↑(x,t)ψ↓(x,t), S−(x,t) = ψ

†
↓(x,t)ψ↑(x,t),

(101)

and (v) pair correlation function:

Gp(x,t) = 〈ψ↓(x,t)ψ↑(x,t)ψ†
↑(0,0)ψ†

↓(0,0)〉. (102)

For each of the correlation functions considered above, the
values of n are given by

G↑(x,t) : ("Nc = 1,"Ns = 0,Dc ∈ Z+1/2,Ds ∈ Z + 1/2),

G↓(x,t) : ("Nc = 1,"Ns = 1,Dc ∈ Z,Ds ∈ Z + 1/2),

Gnn(x,t) : ("Nc = 0,"Ns = 0,Dc ∈ Z,Ds ∈ Z),

Gz(x,t) : ("Nc = 0,"Ns = 0,Dc ∈ Z,Ds ∈ Z),

G⊥(x,t) : ("Nc = 0,"Ns = 1,Dc ∈ Z + 1/2,Ds ∈ Z),

Gp(x,t) : ("Nc = 2,"Ns = 1,Dc ∈ Z + 1/2,Ds ∈ Z),

with N±
c,s ∈ Z!0 for every case. The explicit results for these

correlation functions for H + 1 and H → Hc are given
in Appendices D and E, which include the order of 1/γ
corrections in the critical exponents.

VI. CONCLUSION

We have derived the low-temperature thermodynamics and
long-distance asymptotics of correlation functions for the spin-
1/2 repulsive δ-function interacting Fermi gas with an external
field by means of the thermodynamic Bethe ansatz method
and dressed charge formalism. With the help of Wiener-
Hopf techniques we have calculated the low-temperature free
energy and thermodynamics and found that the low-energy
physics can be described by a spin-charge separated theory
of a Tomonaga-Luttinger liquid and an antiferromagnetic
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Fig. S6. Excitation Spectrum for Yang-Gaudin Model. Exact particle-hole (green) and two-

spinon (gray) excitation spectra for a repulsive Fermi gas with periodic boundary condtions at

� = c/n = 5.03 with the Fermi surface kF = n⇡, where density n = N/L = 3 ⇥ 106 (1/m),

�E = h̄!. The black dashed lines in the charge and spin spectra correspond to the charge veloc-

ity vc and spin velocity vs, respectively. Here the red dashed line shows the excited momentum

imparted by the Bragg beams in our experiment, which is set as �K = h̄q, q = 1.47 µm
�1 for

both charge and spin DSFs.

5 Charge and Spin DSFs

Although we have exact solutions of the model (Eq. (S4)), the charge and spin dynamic structure

factors for a repulsive Fermi gas have yet to be analytically calculated. This is a long standing

theoretical challenge. In the linear TLL theory at finite temperature, the charge DSF is a �-
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E. Finite-temperature effects

We now discuss the effects of finite temperature on the
broadening of the charge and spin peaks in the DCSF. This
will be important to compute the temperature dependence of
the drag resistivity in Eq. !1".

We consider the regime where both temperature and band
curvature energy scale are small compared to the scale of
spin-charge separation: T! !vc−vs"vc /"− and q! !vc
−vs" /"−. Assuming that vc, vs, and vc−vs are all on the order
of vF and 1 /"− is on the order of m, these conditions mean
roughly T!TF=mvF

2 /2 and q!kF. This is the regime in
which we may expect the spin and charge peaks to remain
well separated. Neglecting the overlap between the spin and
charge peaks, the line shape of the charge peak can be ap-
proximated by the finite temperature result for the imaginary
part of the density-density correlation function for free fer-
mions with mass #2 /"− !Refs. 10 and 17"

A!q,#,T" $
#2Kc

"−q
%nF!w+" − nF!w−"& , !72"

where nF!#"=1 / !1+e#/T" is the Fermi-Dirac distribution
function and w$'%!#$%#c /2"2− !vcq"2& / !2%#c", with %#c
=%#c!q"="−q2 /#2. The width of the charge peak at finite
temperature is then of the order of max("−q2 ,"−qT /vc).

The calculation of the width of the spin peak is more
complicated because we do not have an approximation in
terms of noninteracting spinless fermions. For the purpose of
calculating the drag resistivity in Eq. !1", we are only inter-
ested in whether for fixed small q and at low temperature the
spin peak can become broader than the charge peak. On the
one hand, the broadening due solely to band curvature must
be of order !&q2 /vs"T for T*vsq. As long as q ,T /vs
!m!vc−vs" ,"− /&, this is small compared to the broadening
of charge peak. On the other hand, thermal effects have a
stronger effect on spin excitations because the latter are
damped by diffusion.31,32

Recall that the spin peak stems from the self-energy with
two spin bosons propagating in the same direction !see Fig.
1". We can calculate the finite-temperature broadening by
neglecting band curvature operators and applying perturba-
tion theory in the marginally irrelevant operator g in Eq. !7".
As we did in Sec. IV D, we neglect the '3 vertex in the
leading logarithmic approximation. To order !'$g"2, there
are two types of diagrams in the self-energy for the charge
boson, as illustrated in Fig. 4. The first type amounts to a
self-energy correction to the spin boson propagator. The

transverse part of the perturbation, −(vsg!JL
+JR

− +H.c." gives
rise to a nonzero imaginary part of the retarded self-energy,
which can be calculated following Ref. 33. We can sum up
the series for this type of diagram by defining the dressed
spin propagator

S̃R!q,i#" =
1

4(

q

i# − vsq − )!q,i#,T"
. !73"

The other type of diagram %Fig. 4!b"& is a vertex correction.
Since the thermal broadening of the spin peak is already
obtained within the approximation of keeping only self-
energy-type diagrams such as the one in Fig. 4!a", we will
make the approximation of neglecting vertex corrections. By
doing this, the two-spin-boson correlation function becomes

!4("2*RR!q,i#" = − +
−+

+ dq!
2(

T,
i,n

S̃R!q!,i,n"

-S̃R!q − q!,i# − i,n"

$ +
−+

+ dq!
2(

q!!q − q!"
i# − vsq − )q! − )q−q!

- %nB!vsq!" − nB!vsq! − vsq"& , !74"

where nB!#"=1 / !e#/T−1" and )q=)q!T"=)!q ,vsq ,T". The
decay rate for the spin boson at finite temperature is the
well-known spin current relaxation rate31

1
.s!T"

= − Im )q
ret $

(

2
%g!T"&2T , !75"

where g!T"$g / %1+g ln!TF /T"&, with TF*mvF
2 , is the cou-

pling constant at scale T. The finite temperature result for the
spin peak in this approximation is then

%A!q,#,T" $
Kc

48(

!/− + /+"2q3F!q,T".s

1 + %!# − vsq".s/2&2 , !76"

where

F!q,T" = 6+
−+

+

duu!1 − u"(nB!vsqu" − nB%vsq!u − 1"&)

!77"

such that F!q ,T→0"=1. Since we neglected band curvature
effects in the spin boson propagator, this approximation is
only valid for 1 /.s!T"0&q3. In Eq. !74", we also assumed
1 /.s!T"!vsq. Therefore we expect that the line shape of the
spin peak at finite temperature be well described by a Lorent-
zian for a range of q that scales linearly with temperature,
q*T /vs, such that T /g!T"! !vs

3 /&"1/2.
More generally, for fixed q there is a crossover tempera-

ture T! given by the condition 1 /.s!T!"*&q3 at which the
line shape of the spin peak goes from highly asymmetric
!with a peak near the zero-temperature threshold" below T!

to approximately Lorentzian in the diffusion-dominated re-
gime above T!.

g

 !"
g

g

g

 #"

FIG. 4. Diagrams at O!'$
2 g2" in the self-energy for the charge

boson: !a" self-energy correction to the spin boson propagator and
!b" vertex correction. The bubble with multiple lines denotes the
correlation function for the operator JR

+JL
−*ei#4(!1R

s −1L
s ", following

Ref. 33.
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intensity (assumed equal for each beam). As shown in
Fig. 2, an intensity per beam of less than 55 mW=cm2

ensures that the momentum transfer is in the linear response
regime over the entire range of interaction strengths

accessed in the experiment. We fix the intensity at this
value.
The Bragg spectra for five values of the interaction

parameter are presented in Fig. 3. Each data point corre-
sponds to an average of 20–30 experimental runs for each
value of ω and fixed q. The full width at half maximum of
these spectra range from 9 kHz for a noninteracting gas to
11 kHz for the most strongly interacting one. These spectral
widths are large compared to the pulse-time broadening
of 3 kHz. The spectra are empirically found to fit well to
a skew normal distribution (convolution of a Gaussian
with the error function). The most probable value of ω may
be obtained from the fitting parameters for each interaction
and these are plotted in Fig. 4. The most probable frequency
increases with interaction strength until a ¼ 400 a0. We
notice heating and atom loss beyond this interaction, quite
probably due to three-body recombination from the unstable
upper branch during the transition from the 3D to 2D lattice.
In contrast, we observe no atom loss for a between 0 and
400 a0.
In the linear response regime, the experimentally mea-

sured momentum transfer for each q and ω is proportional
to Sðq;ωÞ − Sð−q;−ωÞ, where the second term accounts

FIG. 2. Bragg signal vs intensity per Bragg beam. The
plotted signal is an average of the signal at three different
frequencies: ω=2π ¼ 5, 9, and 13 kHz. The dashed lines are
linear fits for laser intensities below 65 mW=cm2. The two
Bragg beams are Gaussian, each with a waist of 570 μm, and
the pulse time is 300 μs.

(a)

(c) (d)

(b)

FIG. 1. Column density images of (a) signal and (b) reference,
corresponding to Bragg or no Bragg pulse, respectively.
(c) Difference of (a) and (b). (d) Line density of reference
(red), signal (green), and their difference (blue). The line densities
are calculated by summing over the column densities along the
axis perpendicular to the 1D tube direction, which is the vertical
axis for (a)–(c). The Bragg signal is proportional to the area under
the positive portion of the difference line density curve.

FIG. 3. Bragg spectra vs ω=2π. The Bragg signal is propor-
tional to the momentum transfer. Each data point is an average of
20–30 experimental shots. The error bars are calculated from the
bootstrapping method [31]. The theoretical spectra (solid lines)
are a result of using the LDAwith TLL theory for each interaction
and a temperature of 200 nK. There are no additional fitting
parameters other than overall scaling.
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for inverse Bragg scattering: absorption by beam 2 and
stimulated emission by beam 1 [23]. The second term will
be small compared to the first when kBT ≪ ℏω [23,33],
and in this case, the measured Bragg signal is proportional
to Sðq;ωÞ.
In order to compare with theory, an inverse Abel trans-

formation is applied to the measured column densities
(without a Bragg pulse) to obtain the distribution of atom
number per tube at each interaction strength. Using the
local density approximation (LDA), we split each tube into
about 100 pieces of length dz with constant density nðzÞ,
calculate the dynamic structure factors independently for
each piece, and sum them together to get the momentum
transfer for one tube. As momentum is an additive quantity,
we repeat this procedure for each tube in the lattice,
summing the individual momentum transfers into the
resulting total momentum transfer.
For a homogeneous Fermi gas, the dynamic structure

factor is

Sðq;ω; kF; T; NÞ ¼ Imχðq;ω; kF; T; NÞ
πð1 − e−βℏωÞ

; ð1Þ

where χ is the dynamic susceptibility [34]. The TLL theory
[3] states that at small q the susceptibility is dominated by a
collective charge mode, whose velocity has a very precise
interaction dependence that can be computed exactly with
known interactions [35]. For a homogeneous system at zero
temperature and small q, the susceptibility has a resonance
at ω ¼ uq, giving direct and convenient access to the
velocity of charge excitations. Thus, for weak interactions,
Eq. (1) may be used to calculate the structure factor, but in

this case, substituting the speed of sound u obtained from
Bethe ansatz [35] for the Fermi velocity to account for the
shift in the resonance. The velocity u may be calculated
exactly as a function of interaction. More details of our
theoretical analysis are available in the Supplemental
Material [36].
We use this procedure to calculate the structure factor

for a temperature of 200 nK and compare with the
experimental data, as shown in Fig. 3. The only adjustable
parameter is the overall scaling of the excitation. The
agreement between the calculated line shape with the
experimental one validates our method to account for
the sources of broadening and shows that the experiment
gives direct access to the interaction dependence of the
velocity. The peaks of the experimental excitation spectra
for each interaction are plotted in Fig. 4 together with the
theoretical result. The agreement between the measured
and computed interaction dependence of the velocity is
very good and provides the first experimental test of the
change in velocity of the collective excitation of a 1D Fermi
gas vs interactions.
We also attempted to measure the dynamical structure

factor of the spin mode by adjusting the detuning of the
Bragg laser to be negative for one spin state, while positive
for the other [27]. Since the two optical transitions are
separated by only 76 MHz, however, we were unable to
observe a Bragg signal without destroying the sample
with excessive spontaneous emission from the excited 2P
state. It may be possible to observe a spin-dependent Bragg
signal in the future by detuning from the 3P excited state
instead, as the rate of spontaneous emission is reduced by
the ratio of linewidths, which is a factor of 8 in this case
[38]. Such a measurement will thus give full access to the
two collective modes controlling the physics of the inter-
acting fermionic system. Furthermore, it would be inter-
esting to couple such measurements with those of the single
particle excitation spectrum, e.g., by momentum resolved rf
spectroscopy [39,40], to establish the link between the
single particle spectrum and the collective modes predicted
by TLL.
In conclusion, we have measured the dynamic response of

a one-dimensional two-component fermionic system using
Bragg spectroscopy and find good agreement with TLL
theory for the collective charge mode. The ability to adjust
the interaction strength via a Feshbach resonance enables
future studies, such as a direct observation of spin-charge
separation, the dynamic response for high q excitation that
goes beyond the Luttinger liquid theory, or possibly a system
with p-wave interactions for a single spin state.

This work was supported in part by the Army Research
Office Multidisciplinary University Research Initiative
(Grant Nos. W911NF-14-1-0003 and W911NF-17-1-
0323), the Office of Naval Research, the NSF (Grant
No. PHY-1707992), and the Swiss National Science
Foundation under division II.

FIG. 4. Peak frequency of each spectrum derived from empiri-
cal fits of the measured excitation spectra from Fig. 3. For
the theory curve (dashed), we simply find the location of the
maximum excitation. γ$ corresponds to the dimensionless inter-
action parameter γ at the center of the 1D tube with the
most probable atom number. Here, γ ¼ ½mg1ðaÞ=ℏ2ρ1D& and
g1 ¼ ½ð2ℏω⊥aÞ=ð1 − 1.03a=a⊥Þ&, where a⊥ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ℏ=mω⊥

p
and

ρ1D is the total 1D density [32]. The corresponding speed of
sound ω=q is given by the right axis.
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FIG. 14: Upper panel: Bragg spectral signal SC(q, !) v.s.
detuning frequency ! for the quasi-1D trapped Yang-Gaudin
model (10)). Normalized Bragg data, which are related to the
charge DSF SC(q, !) (symbols), are in good agreement with
theoretical simulation from Eq. (77) (solid curves) for the
range of 3D scattering length a from 0 to 400 a0. In theoretical
simulation a global temperature T = 200 nK and the local
density approximation were used. Lower panel: The peak
frequency (left vertical axis) and sound velocity (right vertical
axis) v.s. the scattering length for a = 0, 100, 200, 300, 400
a0. The corresponding values of the e↵ective dimensionless
interaction �⇤ in the center of the tube with the most probable
number were shown in horizontal axis. The black dashed
line is the Bethe ansatz theoretical value for each interaction
strength. Figure from [35].

with TF ⇠ mv2
F and g=g1/(⇡vs), here g1 = c is the

interaction strength of the model.
Using Bragg beams to excite charge and spin excita-

tions with the momentum transfer to the system from
the Bragg beams is given by

P (q, !) /
 

1

�2
"

+
1

�2
#

!
S"" +

2

�"�#
S"#, (85)

where �� is the relative detuning of the Bragg beam
with respect to each spin state. For charge excitation
in experimental setting with �" ⇡ �# � �"#, here
�"# is the splitting energy between the two spin states,

Fig. 2. Bragg spectra for SC,S(q, �). Normalized Bragg signals related to SC(q, �) (red

triangles) and SS(q, �) (blue circles) for the range of 3D scattering length a from 0 to 500 a0.

Each data-point is the average of at least 20 separate experimental shots. Error bars represent

standard error, obtained via bootstrapping (29). Solid lines are the calculated Bragg spectra

for a global temperature T = 250 nK with no additional fitting parameters other than overall5

scaling. Vertical dashed lines show the extracted peak frequency �p for the non-interacting case

(gray), and the strongest probed interactions for the spin- and the charge-mode (blue and red,

respectively).
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Fig. 3. Spin-charge separation. Peaks of measured Bragg spectra for charge (red triangles)

and spin (blue circles) configurations for a ranging from 0 to 500 a0. Peak frequency values

determined via fits of a parabolic function to the data-points above 50% of the maximum mea-

sured value, and error bars are standard errors of the relevant fit parameters. The corresponding

speed of sound vp = �p/q is given by the right axis. The upper horizontal axis gives the interac-5

tion strength in terms of the Lieb-Liniger parameter ��, calculated for a median tube occupancy

of 30 atoms. Lines show the calculated values for �p for the charge- and the spin-mode (dash-

dotted red and dashed blue, respectively). Symbols for a = 0, 100 a0 are slightly displaced

from one another for clarity due to the subtle particle number distributions in the 3D trap. In

this region the difference in the speed of sound is still within the experimental uncertainty. In10

addition, we suspect that the calculated Bragg peaks for the spin mode would be monotonic at

low interactions if band curvature was included in the spin mode calculation and the particle
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FIG. 15: Upper panel: Bragg spectra v.s. detuning frequency
!/2⇡ for the charge and spin density waves. The normalized
Bragg signals SC(q, !) (red triangles)(symbols) and SS(q, !)
(blue circles) are in good agreement with theoretical simula-
tion (solid curves) for the range of 3D scattering length a from
0 to 500 a0 and for a global temperature T = 250 nK. The
long vertical dashed line shows the extracted peak frequency
!p for the non-interacting case (gray), and the short vertical
dashed lines indicate the strongest probed interactions for the
spin- and the charge-modes, respectively. Lower panel: Spin-
charge separation. The peaks of measured Bragg spectra for
charge (red triangles) and spin (blue circles) agree well with
theoretical velocities (red and blue dashed lines) for the range
of 3D scattering length a ranging from 0 to 500 a0. Figure
from [103].

then the momentum transfer P (q, !) / SC(q,!) for
the change density wave. Whereas for spin excitations,
�" = ��# = |�"#|/2, then the momentum transfer
P (q, !) / SS(q, !). In the above equations, the charge-
and spin-density DSF are given by

SC,S(q, !) ⌘ 2 [S""(q, !) ± S"#(q, !)] . (86)

Momentum transfer (spin state detuning fØ ) 
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intensity (assumed equal for each beam). As shown in
Fig. 2, an intensity per beam of less than 55 mW=cm2

ensures that the momentum transfer is in the linear response
regime over the entire range of interaction strengths

accessed in the experiment. We fix the intensity at this
value.
The Bragg spectra for five values of the interaction

parameter are presented in Fig. 3. Each data point corre-
sponds to an average of 20–30 experimental runs for each
value of ω and fixed q. The full width at half maximum of
these spectra range from 9 kHz for a noninteracting gas to
11 kHz for the most strongly interacting one. These spectral
widths are large compared to the pulse-time broadening
of 3 kHz. The spectra are empirically found to fit well to
a skew normal distribution (convolution of a Gaussian
with the error function). The most probable value of ω may
be obtained from the fitting parameters for each interaction
and these are plotted in Fig. 4. The most probable frequency
increases with interaction strength until a ¼ 400 a0. We
notice heating and atom loss beyond this interaction, quite
probably due to three-body recombination from the unstable
upper branch during the transition from the 3D to 2D lattice.
In contrast, we observe no atom loss for a between 0 and
400 a0.
In the linear response regime, the experimentally mea-

sured momentum transfer for each q and ω is proportional
to Sðq;ωÞ − Sð−q;−ωÞ, where the second term accounts

FIG. 2. Bragg signal vs intensity per Bragg beam. The
plotted signal is an average of the signal at three different
frequencies: ω=2π ¼ 5, 9, and 13 kHz. The dashed lines are
linear fits for laser intensities below 65 mW=cm2. The two
Bragg beams are Gaussian, each with a waist of 570 μm, and
the pulse time is 300 μs.

(a)

(c) (d)

(b)

FIG. 1. Column density images of (a) signal and (b) reference,
corresponding to Bragg or no Bragg pulse, respectively.
(c) Difference of (a) and (b). (d) Line density of reference
(red), signal (green), and their difference (blue). The line densities
are calculated by summing over the column densities along the
axis perpendicular to the 1D tube direction, which is the vertical
axis for (a)–(c). The Bragg signal is proportional to the area under
the positive portion of the difference line density curve.

FIG. 3. Bragg spectra vs ω=2π. The Bragg signal is propor-
tional to the momentum transfer. Each data point is an average of
20–30 experimental shots. The error bars are calculated from the
bootstrapping method [31]. The theoretical spectra (solid lines)
are a result of using the LDAwith TLL theory for each interaction
and a temperature of 200 nK. There are no additional fitting
parameters other than overall scaling.
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for inverse Bragg scattering: absorption by beam 2 and
stimulated emission by beam 1 [23]. The second term will
be small compared to the first when kBT ≪ ℏω [23,33],
and in this case, the measured Bragg signal is proportional
to Sðq;ωÞ.
In order to compare with theory, an inverse Abel trans-

formation is applied to the measured column densities
(without a Bragg pulse) to obtain the distribution of atom
number per tube at each interaction strength. Using the
local density approximation (LDA), we split each tube into
about 100 pieces of length dz with constant density nðzÞ,
calculate the dynamic structure factors independently for
each piece, and sum them together to get the momentum
transfer for one tube. As momentum is an additive quantity,
we repeat this procedure for each tube in the lattice,
summing the individual momentum transfers into the
resulting total momentum transfer.
For a homogeneous Fermi gas, the dynamic structure

factor is

Sðq;ω; kF; T; NÞ ¼ Imχðq;ω; kF; T; NÞ
πð1 − e−βℏωÞ

; ð1Þ

where χ is the dynamic susceptibility [34]. The TLL theory
[3] states that at small q the susceptibility is dominated by a
collective charge mode, whose velocity has a very precise
interaction dependence that can be computed exactly with
known interactions [35]. For a homogeneous system at zero
temperature and small q, the susceptibility has a resonance
at ω ¼ uq, giving direct and convenient access to the
velocity of charge excitations. Thus, for weak interactions,
Eq. (1) may be used to calculate the structure factor, but in

this case, substituting the speed of sound u obtained from
Bethe ansatz [35] for the Fermi velocity to account for the
shift in the resonance. The velocity u may be calculated
exactly as a function of interaction. More details of our
theoretical analysis are available in the Supplemental
Material [36].
We use this procedure to calculate the structure factor

for a temperature of 200 nK and compare with the
experimental data, as shown in Fig. 3. The only adjustable
parameter is the overall scaling of the excitation. The
agreement between the calculated line shape with the
experimental one validates our method to account for
the sources of broadening and shows that the experiment
gives direct access to the interaction dependence of the
velocity. The peaks of the experimental excitation spectra
for each interaction are plotted in Fig. 4 together with the
theoretical result. The agreement between the measured
and computed interaction dependence of the velocity is
very good and provides the first experimental test of the
change in velocity of the collective excitation of a 1D Fermi
gas vs interactions.
We also attempted to measure the dynamical structure

factor of the spin mode by adjusting the detuning of the
Bragg laser to be negative for one spin state, while positive
for the other [27]. Since the two optical transitions are
separated by only 76 MHz, however, we were unable to
observe a Bragg signal without destroying the sample
with excessive spontaneous emission from the excited 2P
state. It may be possible to observe a spin-dependent Bragg
signal in the future by detuning from the 3P excited state
instead, as the rate of spontaneous emission is reduced by
the ratio of linewidths, which is a factor of 8 in this case
[38]. Such a measurement will thus give full access to the
two collective modes controlling the physics of the inter-
acting fermionic system. Furthermore, it would be inter-
esting to couple such measurements with those of the single
particle excitation spectrum, e.g., by momentum resolved rf
spectroscopy [39,40], to establish the link between the
single particle spectrum and the collective modes predicted
by TLL.
In conclusion, we have measured the dynamic response of

a one-dimensional two-component fermionic system using
Bragg spectroscopy and find good agreement with TLL
theory for the collective charge mode. The ability to adjust
the interaction strength via a Feshbach resonance enables
future studies, such as a direct observation of spin-charge
separation, the dynamic response for high q excitation that
goes beyond the Luttinger liquid theory, or possibly a system
with p-wave interactions for a single spin state.

This work was supported in part by the Army Research
Office Multidisciplinary University Research Initiative
(Grant Nos. W911NF-14-1-0003 and W911NF-17-1-
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Foundation under division II.

FIG. 4. Peak frequency of each spectrum derived from empiri-
cal fits of the measured excitation spectra from Fig. 3. For
the theory curve (dashed), we simply find the location of the
maximum excitation. γ$ corresponds to the dimensionless inter-
action parameter γ at the center of the 1D tube with the
most probable atom number. Here, γ ¼ ½mg1ðaÞ=ℏ2ρ1D& and
g1 ¼ ½ð2ℏω⊥aÞ=ð1 − 1.03a=a⊥Þ&, where a⊥ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ℏ=mω⊥

p
and

ρ1D is the total 1D density [32]. The corresponding speed of
sound ω=q is given by the right axis.
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FIG. 14: Upper panel: Bragg spectral signal SC(q, !) v.s.
detuning frequency ! for the quasi-1D trapped Yang-Gaudin
model (10)). Normalized Bragg data, which are related to the
charge DSF SC(q, !) (symbols), are in good agreement with
theoretical simulation from Eq. (77) (solid curves) for the
range of 3D scattering length a from 0 to 400 a0. In theoretical
simulation a global temperature T = 200 nK and the local
density approximation were used. Lower panel: The peak
frequency (left vertical axis) and sound velocity (right vertical
axis) v.s. the scattering length for a = 0, 100, 200, 300, 400
a0. The corresponding values of the e↵ective dimensionless
interaction �⇤ in the center of the tube with the most probable
number were shown in horizontal axis. The black dashed
line is the Bethe ansatz theoretical value for each interaction
strength. Figure from [35].

with TF ⇠ mv2
F and g=g1/(⇡vs), here g1 = c is the

interaction strength of the model.
Using Bragg beams to excite charge and spin excita-

tions with the momentum transfer to the system from
the Bragg beams is given by

P (q, !) /
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where �� is the relative detuning of the Bragg beam
with respect to each spin state. For charge excitation
in experimental setting with �" ⇡ �# � �"#, here
�"# is the splitting energy between the two spin states,

Fig. 2. Bragg spectra for SC,S(q, �). Normalized Bragg signals related to SC(q, �) (red

triangles) and SS(q, �) (blue circles) for the range of 3D scattering length a from 0 to 500 a0.

Each data-point is the average of at least 20 separate experimental shots. Error bars represent

standard error, obtained via bootstrapping (29). Solid lines are the calculated Bragg spectra

for a global temperature T = 250 nK with no additional fitting parameters other than overall5

scaling. Vertical dashed lines show the extracted peak frequency �p for the non-interacting case

(gray), and the strongest probed interactions for the spin- and the charge-mode (blue and red,

respectively).
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Fig. 3. Spin-charge separation. Peaks of measured Bragg spectra for charge (red triangles)

and spin (blue circles) configurations for a ranging from 0 to 500 a0. Peak frequency values

determined via fits of a parabolic function to the data-points above 50% of the maximum mea-

sured value, and error bars are standard errors of the relevant fit parameters. The corresponding

speed of sound vp = �p/q is given by the right axis. The upper horizontal axis gives the interac-5

tion strength in terms of the Lieb-Liniger parameter ��, calculated for a median tube occupancy

of 30 atoms. Lines show the calculated values for �p for the charge- and the spin-mode (dash-

dotted red and dashed blue, respectively). Symbols for a = 0, 100 a0 are slightly displaced

from one another for clarity due to the subtle particle number distributions in the 3D trap. In

this region the difference in the speed of sound is still within the experimental uncertainty. In10

addition, we suspect that the calculated Bragg peaks for the spin mode would be monotonic at

low interactions if band curvature was included in the spin mode calculation and the particle

14

FIG. 15: Upper panel: Bragg spectra v.s. detuning frequency
!/2⇡ for the charge and spin density waves. The normalized
Bragg signals SC(q, !) (red triangles)(symbols) and SS(q, !)
(blue circles) are in good agreement with theoretical simula-
tion (solid curves) for the range of 3D scattering length a from
0 to 500 a0 and for a global temperature T = 250 nK. The
long vertical dashed line shows the extracted peak frequency
!p for the non-interacting case (gray), and the short vertical
dashed lines indicate the strongest probed interactions for the
spin- and the charge-modes, respectively. Lower panel: Spin-
charge separation. The peaks of measured Bragg spectra for
charge (red triangles) and spin (blue circles) agree well with
theoretical velocities (red and blue dashed lines) for the range
of 3D scattering length a ranging from 0 to 500 a0. Figure
from [103].

then the momentum transfer P (q, !) / SC(q,!) for
the change density wave. Whereas for spin excitations,
�" = ��# = |�"#|/2, then the momentum transfer
P (q, !) / SS(q, !). In the above equations, the charge-
and spin-density DSF are given by

SC,S(q, !) ⌘ 2 [S""(q, !) ± S"#(q, !)] . (86)
Spin excitation gr	:
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intensity (assumed equal for each beam). As shown in
Fig. 2, an intensity per beam of less than 55 mW=cm2

ensures that the momentum transfer is in the linear response
regime over the entire range of interaction strengths

accessed in the experiment. We fix the intensity at this
value.
The Bragg spectra for five values of the interaction

parameter are presented in Fig. 3. Each data point corre-
sponds to an average of 20–30 experimental runs for each
value of ω and fixed q. The full width at half maximum of
these spectra range from 9 kHz for a noninteracting gas to
11 kHz for the most strongly interacting one. These spectral
widths are large compared to the pulse-time broadening
of 3 kHz. The spectra are empirically found to fit well to
a skew normal distribution (convolution of a Gaussian
with the error function). The most probable value of ω may
be obtained from the fitting parameters for each interaction
and these are plotted in Fig. 4. The most probable frequency
increases with interaction strength until a ¼ 400 a0. We
notice heating and atom loss beyond this interaction, quite
probably due to three-body recombination from the unstable
upper branch during the transition from the 3D to 2D lattice.
In contrast, we observe no atom loss for a between 0 and
400 a0.
In the linear response regime, the experimentally mea-

sured momentum transfer for each q and ω is proportional
to Sðq;ωÞ − Sð−q;−ωÞ, where the second term accounts

FIG. 2. Bragg signal vs intensity per Bragg beam. The
plotted signal is an average of the signal at three different
frequencies: ω=2π ¼ 5, 9, and 13 kHz. The dashed lines are
linear fits for laser intensities below 65 mW=cm2. The two
Bragg beams are Gaussian, each with a waist of 570 μm, and
the pulse time is 300 μs.

(a)

(c) (d)

(b)

FIG. 1. Column density images of (a) signal and (b) reference,
corresponding to Bragg or no Bragg pulse, respectively.
(c) Difference of (a) and (b). (d) Line density of reference
(red), signal (green), and their difference (blue). The line densities
are calculated by summing over the column densities along the
axis perpendicular to the 1D tube direction, which is the vertical
axis for (a)–(c). The Bragg signal is proportional to the area under
the positive portion of the difference line density curve.

FIG. 3. Bragg spectra vs ω=2π. The Bragg signal is propor-
tional to the momentum transfer. Each data point is an average of
20–30 experimental shots. The error bars are calculated from the
bootstrapping method [31]. The theoretical spectra (solid lines)
are a result of using the LDAwith TLL theory for each interaction
and a temperature of 200 nK. There are no additional fitting
parameters other than overall scaling.
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for inverse Bragg scattering: absorption by beam 2 and
stimulated emission by beam 1 [23]. The second term will
be small compared to the first when kBT ≪ ℏω [23,33],
and in this case, the measured Bragg signal is proportional
to Sðq;ωÞ.
In order to compare with theory, an inverse Abel trans-

formation is applied to the measured column densities
(without a Bragg pulse) to obtain the distribution of atom
number per tube at each interaction strength. Using the
local density approximation (LDA), we split each tube into
about 100 pieces of length dz with constant density nðzÞ,
calculate the dynamic structure factors independently for
each piece, and sum them together to get the momentum
transfer for one tube. As momentum is an additive quantity,
we repeat this procedure for each tube in the lattice,
summing the individual momentum transfers into the
resulting total momentum transfer.
For a homogeneous Fermi gas, the dynamic structure

factor is

Sðq;ω; kF; T; NÞ ¼ Imχðq;ω; kF; T; NÞ
πð1 − e−βℏωÞ

; ð1Þ

where χ is the dynamic susceptibility [34]. The TLL theory
[3] states that at small q the susceptibility is dominated by a
collective charge mode, whose velocity has a very precise
interaction dependence that can be computed exactly with
known interactions [35]. For a homogeneous system at zero
temperature and small q, the susceptibility has a resonance
at ω ¼ uq, giving direct and convenient access to the
velocity of charge excitations. Thus, for weak interactions,
Eq. (1) may be used to calculate the structure factor, but in

this case, substituting the speed of sound u obtained from
Bethe ansatz [35] for the Fermi velocity to account for the
shift in the resonance. The velocity u may be calculated
exactly as a function of interaction. More details of our
theoretical analysis are available in the Supplemental
Material [36].
We use this procedure to calculate the structure factor

for a temperature of 200 nK and compare with the
experimental data, as shown in Fig. 3. The only adjustable
parameter is the overall scaling of the excitation. The
agreement between the calculated line shape with the
experimental one validates our method to account for
the sources of broadening and shows that the experiment
gives direct access to the interaction dependence of the
velocity. The peaks of the experimental excitation spectra
for each interaction are plotted in Fig. 4 together with the
theoretical result. The agreement between the measured
and computed interaction dependence of the velocity is
very good and provides the first experimental test of the
change in velocity of the collective excitation of a 1D Fermi
gas vs interactions.
We also attempted to measure the dynamical structure

factor of the spin mode by adjusting the detuning of the
Bragg laser to be negative for one spin state, while positive
for the other [27]. Since the two optical transitions are
separated by only 76 MHz, however, we were unable to
observe a Bragg signal without destroying the sample
with excessive spontaneous emission from the excited 2P
state. It may be possible to observe a spin-dependent Bragg
signal in the future by detuning from the 3P excited state
instead, as the rate of spontaneous emission is reduced by
the ratio of linewidths, which is a factor of 8 in this case
[38]. Such a measurement will thus give full access to the
two collective modes controlling the physics of the inter-
acting fermionic system. Furthermore, it would be inter-
esting to couple such measurements with those of the single
particle excitation spectrum, e.g., by momentum resolved rf
spectroscopy [39,40], to establish the link between the
single particle spectrum and the collective modes predicted
by TLL.
In conclusion, we have measured the dynamic response of

a one-dimensional two-component fermionic system using
Bragg spectroscopy and find good agreement with TLL
theory for the collective charge mode. The ability to adjust
the interaction strength via a Feshbach resonance enables
future studies, such as a direct observation of spin-charge
separation, the dynamic response for high q excitation that
goes beyond the Luttinger liquid theory, or possibly a system
with p-wave interactions for a single spin state.

This work was supported in part by the Army Research
Office Multidisciplinary University Research Initiative
(Grant Nos. W911NF-14-1-0003 and W911NF-17-1-
0323), the Office of Naval Research, the NSF (Grant
No. PHY-1707992), and the Swiss National Science
Foundation under division II.

FIG. 4. Peak frequency of each spectrum derived from empiri-
cal fits of the measured excitation spectra from Fig. 3. For
the theory curve (dashed), we simply find the location of the
maximum excitation. γ$ corresponds to the dimensionless inter-
action parameter γ at the center of the 1D tube with the
most probable atom number. Here, γ ¼ ½mg1ðaÞ=ℏ2ρ1D& and
g1 ¼ ½ð2ℏω⊥aÞ=ð1 − 1.03a=a⊥Þ&, where a⊥ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ℏ=mω⊥

p
and

ρ1D is the total 1D density [32]. The corresponding speed of
sound ω=q is given by the right axis.
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FIG. 14: Upper panel: Bragg spectral signal SC(q, !) v.s.
detuning frequency ! for the quasi-1D trapped Yang-Gaudin
model (10)). Normalized Bragg data, which are related to the
charge DSF SC(q, !) (symbols), are in good agreement with
theoretical simulation from Eq. (77) (solid curves) for the
range of 3D scattering length a from 0 to 400 a0. In theoretical
simulation a global temperature T = 200 nK and the local
density approximation were used. Lower panel: The peak
frequency (left vertical axis) and sound velocity (right vertical
axis) v.s. the scattering length for a = 0, 100, 200, 300, 400
a0. The corresponding values of the e↵ective dimensionless
interaction �⇤ in the center of the tube with the most probable
number were shown in horizontal axis. The black dashed
line is the Bethe ansatz theoretical value for each interaction
strength. Figure from [35].

with TF ⇠ mv2
F and g=g1/(⇡vs), here g1 = c is the

interaction strength of the model.
Using Bragg beams to excite charge and spin excita-

tions with the momentum transfer to the system from
the Bragg beams is given by

P (q, !) /
 

1

�2
"

+
1

�2
#

!
S"" +

2

�"�#
S"#, (85)

where �� is the relative detuning of the Bragg beam
with respect to each spin state. For charge excitation
in experimental setting with �" ⇡ �# � �"#, here
�"# is the splitting energy between the two spin states,

Fig. 2. Bragg spectra for SC,S(q, �). Normalized Bragg signals related to SC(q, �) (red

triangles) and SS(q, �) (blue circles) for the range of 3D scattering length a from 0 to 500 a0.

Each data-point is the average of at least 20 separate experimental shots. Error bars represent

standard error, obtained via bootstrapping (29). Solid lines are the calculated Bragg spectra

for a global temperature T = 250 nK with no additional fitting parameters other than overall5

scaling. Vertical dashed lines show the extracted peak frequency �p for the non-interacting case

(gray), and the strongest probed interactions for the spin- and the charge-mode (blue and red,

respectively).
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Fig. 3. Spin-charge separation. Peaks of measured Bragg spectra for charge (red triangles)

and spin (blue circles) configurations for a ranging from 0 to 500 a0. Peak frequency values

determined via fits of a parabolic function to the data-points above 50% of the maximum mea-

sured value, and error bars are standard errors of the relevant fit parameters. The corresponding

speed of sound vp = �p/q is given by the right axis. The upper horizontal axis gives the interac-5

tion strength in terms of the Lieb-Liniger parameter ��, calculated for a median tube occupancy

of 30 atoms. Lines show the calculated values for �p for the charge- and the spin-mode (dash-

dotted red and dashed blue, respectively). Symbols for a = 0, 100 a0 are slightly displaced

from one another for clarity due to the subtle particle number distributions in the 3D trap. In

this region the difference in the speed of sound is still within the experimental uncertainty. In10

addition, we suspect that the calculated Bragg peaks for the spin mode would be monotonic at

low interactions if band curvature was included in the spin mode calculation and the particle
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FIG. 15: Upper panel: Bragg spectra v.s. detuning frequency
!/2⇡ for the charge and spin density waves. The normalized
Bragg signals SC(q, !) (red triangles)(symbols) and SS(q, !)
(blue circles) are in good agreement with theoretical simula-
tion (solid curves) for the range of 3D scattering length a from
0 to 500 a0 and for a global temperature T = 250 nK. The
long vertical dashed line shows the extracted peak frequency
!p for the non-interacting case (gray), and the short vertical
dashed lines indicate the strongest probed interactions for the
spin- and the charge-modes, respectively. Lower panel: Spin-
charge separation. The peaks of measured Bragg spectra for
charge (red triangles) and spin (blue circles) agree well with
theoretical velocities (red and blue dashed lines) for the range
of 3D scattering length a ranging from 0 to 500 a0. Figure
from [103].

then the momentum transfer P (q, !) / SC(q,!) for
the change density wave. Whereas for spin excitations,
�" = ��# = |�"#|/2, then the momentum transfer
P (q, !) / SS(q, !). In the above equations, the charge-
and spin-density DSF are given by

SC,S(q, !) ⌘ 2 [S""(q, !) ± S"#(q, !)] . (86)
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intensity (assumed equal for each beam). As shown in
Fig. 2, an intensity per beam of less than 55 mW=cm2

ensures that the momentum transfer is in the linear response
regime over the entire range of interaction strengths

accessed in the experiment. We fix the intensity at this
value.
The Bragg spectra for five values of the interaction

parameter are presented in Fig. 3. Each data point corre-
sponds to an average of 20–30 experimental runs for each
value of ω and fixed q. The full width at half maximum of
these spectra range from 9 kHz for a noninteracting gas to
11 kHz for the most strongly interacting one. These spectral
widths are large compared to the pulse-time broadening
of 3 kHz. The spectra are empirically found to fit well to
a skew normal distribution (convolution of a Gaussian
with the error function). The most probable value of ω may
be obtained from the fitting parameters for each interaction
and these are plotted in Fig. 4. The most probable frequency
increases with interaction strength until a ¼ 400 a0. We
notice heating and atom loss beyond this interaction, quite
probably due to three-body recombination from the unstable
upper branch during the transition from the 3D to 2D lattice.
In contrast, we observe no atom loss for a between 0 and
400 a0.
In the linear response regime, the experimentally mea-

sured momentum transfer for each q and ω is proportional
to Sðq;ωÞ − Sð−q;−ωÞ, where the second term accounts

FIG. 2. Bragg signal vs intensity per Bragg beam. The
plotted signal is an average of the signal at three different
frequencies: ω=2π ¼ 5, 9, and 13 kHz. The dashed lines are
linear fits for laser intensities below 65 mW=cm2. The two
Bragg beams are Gaussian, each with a waist of 570 μm, and
the pulse time is 300 μs.

(a)

(c) (d)

(b)

FIG. 1. Column density images of (a) signal and (b) reference,
corresponding to Bragg or no Bragg pulse, respectively.
(c) Difference of (a) and (b). (d) Line density of reference
(red), signal (green), and their difference (blue). The line densities
are calculated by summing over the column densities along the
axis perpendicular to the 1D tube direction, which is the vertical
axis for (a)–(c). The Bragg signal is proportional to the area under
the positive portion of the difference line density curve.

FIG. 3. Bragg spectra vs ω=2π. The Bragg signal is propor-
tional to the momentum transfer. Each data point is an average of
20–30 experimental shots. The error bars are calculated from the
bootstrapping method [31]. The theoretical spectra (solid lines)
are a result of using the LDAwith TLL theory for each interaction
and a temperature of 200 nK. There are no additional fitting
parameters other than overall scaling.
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for inverse Bragg scattering: absorption by beam 2 and
stimulated emission by beam 1 [23]. The second term will
be small compared to the first when kBT ≪ ℏω [23,33],
and in this case, the measured Bragg signal is proportional
to Sðq;ωÞ.
In order to compare with theory, an inverse Abel trans-

formation is applied to the measured column densities
(without a Bragg pulse) to obtain the distribution of atom
number per tube at each interaction strength. Using the
local density approximation (LDA), we split each tube into
about 100 pieces of length dz with constant density nðzÞ,
calculate the dynamic structure factors independently for
each piece, and sum them together to get the momentum
transfer for one tube. As momentum is an additive quantity,
we repeat this procedure for each tube in the lattice,
summing the individual momentum transfers into the
resulting total momentum transfer.
For a homogeneous Fermi gas, the dynamic structure

factor is

Sðq;ω; kF; T; NÞ ¼ Imχðq;ω; kF; T; NÞ
πð1 − e−βℏωÞ

; ð1Þ

where χ is the dynamic susceptibility [34]. The TLL theory
[3] states that at small q the susceptibility is dominated by a
collective charge mode, whose velocity has a very precise
interaction dependence that can be computed exactly with
known interactions [35]. For a homogeneous system at zero
temperature and small q, the susceptibility has a resonance
at ω ¼ uq, giving direct and convenient access to the
velocity of charge excitations. Thus, for weak interactions,
Eq. (1) may be used to calculate the structure factor, but in

this case, substituting the speed of sound u obtained from
Bethe ansatz [35] for the Fermi velocity to account for the
shift in the resonance. The velocity u may be calculated
exactly as a function of interaction. More details of our
theoretical analysis are available in the Supplemental
Material [36].
We use this procedure to calculate the structure factor

for a temperature of 200 nK and compare with the
experimental data, as shown in Fig. 3. The only adjustable
parameter is the overall scaling of the excitation. The
agreement between the calculated line shape with the
experimental one validates our method to account for
the sources of broadening and shows that the experiment
gives direct access to the interaction dependence of the
velocity. The peaks of the experimental excitation spectra
for each interaction are plotted in Fig. 4 together with the
theoretical result. The agreement between the measured
and computed interaction dependence of the velocity is
very good and provides the first experimental test of the
change in velocity of the collective excitation of a 1D Fermi
gas vs interactions.
We also attempted to measure the dynamical structure

factor of the spin mode by adjusting the detuning of the
Bragg laser to be negative for one spin state, while positive
for the other [27]. Since the two optical transitions are
separated by only 76 MHz, however, we were unable to
observe a Bragg signal without destroying the sample
with excessive spontaneous emission from the excited 2P
state. It may be possible to observe a spin-dependent Bragg
signal in the future by detuning from the 3P excited state
instead, as the rate of spontaneous emission is reduced by
the ratio of linewidths, which is a factor of 8 in this case
[38]. Such a measurement will thus give full access to the
two collective modes controlling the physics of the inter-
acting fermionic system. Furthermore, it would be inter-
esting to couple such measurements with those of the single
particle excitation spectrum, e.g., by momentum resolved rf
spectroscopy [39,40], to establish the link between the
single particle spectrum and the collective modes predicted
by TLL.
In conclusion, we have measured the dynamic response of

a one-dimensional two-component fermionic system using
Bragg spectroscopy and find good agreement with TLL
theory for the collective charge mode. The ability to adjust
the interaction strength via a Feshbach resonance enables
future studies, such as a direct observation of spin-charge
separation, the dynamic response for high q excitation that
goes beyond the Luttinger liquid theory, or possibly a system
with p-wave interactions for a single spin state.
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Office Multidisciplinary University Research Initiative
(Grant Nos. W911NF-14-1-0003 and W911NF-17-1-
0323), the Office of Naval Research, the NSF (Grant
No. PHY-1707992), and the Swiss National Science
Foundation under division II.

FIG. 4. Peak frequency of each spectrum derived from empiri-
cal fits of the measured excitation spectra from Fig. 3. For
the theory curve (dashed), we simply find the location of the
maximum excitation. γ$ corresponds to the dimensionless inter-
action parameter γ at the center of the 1D tube with the
most probable atom number. Here, γ ¼ ½mg1ðaÞ=ℏ2ρ1D& and
g1 ¼ ½ð2ℏω⊥aÞ=ð1 − 1.03a=a⊥Þ&, where a⊥ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ℏ=mω⊥

p
and

ρ1D is the total 1D density [32]. The corresponding speed of
sound ω=q is given by the right axis.
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FIG. 14: Upper panel: Bragg spectral signal SC(q, !) v.s.
detuning frequency ! for the quasi-1D trapped Yang-Gaudin
model (10)). Normalized Bragg data, which are related to the
charge DSF SC(q, !) (symbols), are in good agreement with
theoretical simulation from Eq. (77) (solid curves) for the
range of 3D scattering length a from 0 to 400 a0. In theoretical
simulation a global temperature T = 200 nK and the local
density approximation were used. Lower panel: The peak
frequency (left vertical axis) and sound velocity (right vertical
axis) v.s. the scattering length for a = 0, 100, 200, 300, 400
a0. The corresponding values of the e↵ective dimensionless
interaction �⇤ in the center of the tube with the most probable
number were shown in horizontal axis. The black dashed
line is the Bethe ansatz theoretical value for each interaction
strength. Figure from [35].

with TF ⇠ mv2
F and g=g1/(⇡vs), here g1 = c is the

interaction strength of the model.
Using Bragg beams to excite charge and spin excita-

tions with the momentum transfer to the system from
the Bragg beams is given by

P (q, !) /
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where �� is the relative detuning of the Bragg beam
with respect to each spin state. For charge excitation
in experimental setting with �" ⇡ �# � �"#, here
�"# is the splitting energy between the two spin states,

Fig. 2. Bragg spectra for SC,S(q, �). Normalized Bragg signals related to SC(q, �) (red

triangles) and SS(q, �) (blue circles) for the range of 3D scattering length a from 0 to 500 a0.

Each data-point is the average of at least 20 separate experimental shots. Error bars represent

standard error, obtained via bootstrapping (29). Solid lines are the calculated Bragg spectra

for a global temperature T = 250 nK with no additional fitting parameters other than overall5

scaling. Vertical dashed lines show the extracted peak frequency �p for the non-interacting case

(gray), and the strongest probed interactions for the spin- and the charge-mode (blue and red,

respectively).
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Fig. 3. Spin-charge separation. Peaks of measured Bragg spectra for charge (red triangles)

and spin (blue circles) configurations for a ranging from 0 to 500 a0. Peak frequency values

determined via fits of a parabolic function to the data-points above 50% of the maximum mea-

sured value, and error bars are standard errors of the relevant fit parameters. The corresponding

speed of sound vp = �p/q is given by the right axis. The upper horizontal axis gives the interac-5

tion strength in terms of the Lieb-Liniger parameter ��, calculated for a median tube occupancy

of 30 atoms. Lines show the calculated values for �p for the charge- and the spin-mode (dash-

dotted red and dashed blue, respectively). Symbols for a = 0, 100 a0 are slightly displaced

from one another for clarity due to the subtle particle number distributions in the 3D trap. In

this region the difference in the speed of sound is still within the experimental uncertainty. In10

addition, we suspect that the calculated Bragg peaks for the spin mode would be monotonic at

low interactions if band curvature was included in the spin mode calculation and the particle
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FIG. 15: Upper panel: Bragg spectra v.s. detuning frequency
!/2⇡ for the charge and spin density waves. The normalized
Bragg signals SC(q, !) (red triangles)(symbols) and SS(q, !)
(blue circles) are in good agreement with theoretical simula-
tion (solid curves) for the range of 3D scattering length a from
0 to 500 a0 and for a global temperature T = 250 nK. The
long vertical dashed line shows the extracted peak frequency
!p for the non-interacting case (gray), and the short vertical
dashed lines indicate the strongest probed interactions for the
spin- and the charge-modes, respectively. Lower panel: Spin-
charge separation. The peaks of measured Bragg spectra for
charge (red triangles) and spin (blue circles) agree well with
theoretical velocities (red and blue dashed lines) for the range
of 3D scattering length a ranging from 0 to 500 a0. Figure
from [103].

then the momentum transfer P (q, !) / SC(q,!) for
the change density wave. Whereas for spin excitations,
�" = ��# = |�"#|/2, then the momentum transfer
P (q, !) / SS(q, !). In the above equations, the charge-
and spin-density DSF are given by

SC,S(q, !) ⌘ 2 [S""(q, !) ± S"#(q, !)] . (86)

Using |1 > ±^|	|3 > states and narrow 2' − 3≤5/, (UV) transition 

to reduce the rate of spontaneous emission in spin excitation; 

|1 > ±^|	|2 >	energy levels are used for charge excitations.

Sign of the light shift potential:
• Symmetrical light shift  for charge density wave

• Asymmetrical light shift for spin density wave

323nm
671nm

|q|=1.47#U1'

Fig. S5. Effects of atom loss on spin-mode Bragg spectrum. Spin-mode Bragg spectra at 0a0

(A) and 500a0 (B) for high frequencies and different amounts of atom loss, �, resulting from

different probing power (with fixed beam-waists). In each case a vertical displacement between

data-sets with different values of � is added for clarity. (C,D) Same data-sets shown in (A) and

(B) respectively, with each scaled according to maximum signal size. For comparison, the data

in Fig. 2 in the main text are shown in gray for each case. Dashed lines are guides to the eye.

3 Charge and spin density wave excitations

If we consider a 1D two-component interacting Fermi gas consisting of an equal number (N/2)

of spin-up (") and spin-down (#) states, then the overall dynamic structure factor S(q,!) will

have two independent components labeled by S"" and S"#. Each component S�,�0 is the Fourier

transform of the density-density correlation function (23):

S��0(q,!) =
1

2⇡

Z
dz

Z
dt e�i(q·z�!t)

h⇢�(x, t)⇢�0(0, 0)i =
1

2⇡

Z
dt ei!th⇢�(q, t)⇢

†
�0(q, 0)i,

(S1)

where ⇢̂� is the density operator for a spin state �. At zero temperature, the momentum transfer

to the atoms from the Bragg beams P (q,!) / S(q,!), and using Fermi’s golden rule we obtain:
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Figure 14: (a) Contour plot of specific heat in the T − B plane at µ = −2, u = 1 for IV-
II phase transition. The blue dashed lines present the critical temperatures determined
by the maximum values of the specific heat (eq.(185)) and squared symbols denote the
numerical evaluations from the TBA equations. The dash-dotted yellow lines mark the
TLL phase boundaries below which the specific heat show a linear temperature depen-
dent. Crossover regimes between the blue dashed and the yellow dash-dotted lines denote
the SILL phase (on the left) and the spin-gapped phase (on the right). In this figure,
α1,2,3,β1,2 in the scaling functions of the specific heat denote the coefficients independent
of the temperature, see eqs. (187) and (190). (b) and (c) show the specfic heat v.s.
temperature near the phase transition IV-II for the magnetic field is less than (greater
than) critical magnetic field Bc, respectively. The temperature-independent region and
the temperature-square-dependent region in the ratio Cv/T can be visible, charactering
the thermodynamics of the TLL and SILL, respectively.

On the other hand, in the quantum critical region, heat capacity satisfies the universal
scaling form

Cv/T = c0+c1T
−1/2

[

3

4
Li 3

2
(−ex)− xLi 1

2
(−ex) + x2Li− 1

2
(−ex)

]

+O((∆B/T )5/2), (185)

where c0 is zero temperature background, c1 is a coefficient depending on the transition
point, see eq.(148), and x = −ε1(0)/T = αB∆B/T . One quality of heat capacity is that it
displays bimodal structures around QCP. Thus it’s efficient to mark the QC boundaries in
terms of the maxima points given by heat capacity. The local maxima can be determined
by ∂Cv/∂B = 0, i.e.

1

4
Li 1

2
(−ex)− xLi− 1

2
(−ex)− x2Li− 3

2
(−ex) = 0, (186)

which gives two solutions x1 = −1.5629, x2 = 3.6205. Fig.14(a) show an overall behavior
of quantum criticality in the vicinity of the IV-II phase transition in T − B plane. The
blue-dashed lines and squares denote the maxima of specific heat from analytical results
eq.(185) and numerical TBA equations, respectively, showing a good agreement between
them. In this critical region, T " ∆B = B − Bc, other thermodynamic properties also
show universal scaling behaviour given by eqs. (144)-(148).

As temperature decreases gradually from the QC part to a certain extent, TLL regions
appear, see the areas below the yellow lines in Fig.14(a). Around the critical point Bc =
0.55, there emerges two TLLs. In the part less than Bc, the system lies in phase IV with
spin and charge degrees coexistence, denoted as TLLSC . More than Bc, the system lies
in phase II with only charge degree, denoted as TLLC . In the TLL region, the specific
heat Cv linearly dependent on T , also see discussion in Section 3. In the crossover region
between QC and the TLLC phase, the spin sector is gapped. By utilizing the asymptotic
behaviour of polylog function [133] and expanding eq.(148), the specific heat is given by

Cv ≈
πT

3vc
+

3π
1
2a0
4

(η1)
− 1

2 T
1
2 eαB∆B/T +O

(

∆BeαB∆B/T
)

. (187)
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Fig. 2. Temperature e↵ects on density waves. a, Bragg
signal corresponding to S�(q,!) for di↵erent tempera-
tures. Each data-point is the average of at least 20 sep-
arate experimental shots. Solid lines are a fit to the
Bragg spectra using a free-fermion theory with fit pa-
rameter T (see Methods). b, Peak amplitude Sp of the
Bragg spectra as a function of T , where empty circles
correspond to a symmetric Bragg excitation, S�, while
filled circles represent the antisymmetric excitation, S↵.
The dark-gray dashed line is a fit to T , assuming an ex-
ponential dependence, signaling the loss of correlations
due to thermal fluctuations. Error bars represent stan-
dard error, obtained via bootstrapping (see Methods for
details).

“c”, respectively.

Representative Bragg spectra, corresponding to
several values of T , are shown in Fig. 2a. We deter-
mine T for these by fitting the measured Sc(q,!) to
a free-fermion theory for which the density inhomo-
geneity is accounted for by the local density approxi-
mation, as in our previous work[12, 14]. We observe
an overall suppression of the excitation amplitude
with increasing T (Fig. 2b). This is indicative of the
loss of coherence, and therefore, correlations. The
measured peak amplitudes Sp are the same for both
modes, within uncertainty, and they follow an expo-
nential dependence on T , in agreement with a previ-
ous theoretical study of the role of temperature that
predicted exponential decay of correlations with in-
creasing T , as the system departs the SC regime[28].
While the CI regime has yet to be characterized, we
associate the decay in the Bragg response to the loss
of density-density correlations due to the prolifera-

Fig. 3. Suppression of spin-charge separation. Frequen-
cies at the peak amplitude of measured Bragg spectra
for symmetric (red triangles) and antisymmetric (blue
circles) excitations as a function of T . The correspond-
ing speed of sound vp = !p/q is given by the right axis.
Error bars are the statistical standard errors of the ex-
tracted peak frequency obtained via a quadratic regres-
sion (see Methods). At su�ciently high T , only charge
waves propagate, as the loss of spin coherence suppresses
the separation of the collective density waves. Solid ver-
tical lines correspond to the boundaries of the thermal
hierarchy evaluated for N = 30 and as = 500 a0.

tion of holes, suppressing the coherent propagation
of either mode.

The atoms should respond only to a Bragg exci-
tation with a symmetric light shift in the SI regime,
since spin correlations are suppressed there[29, 32].
During the crossover between the SC and the SI
regimes the Luttinger liquid will be averaged over an
increasing number of spin configurations that have
regions of local spin-imbalance (see Fig. 1a). Due
to these regions, the Bragg pulse used to excite the
spin-mode no longer has a locally antisymmetric re-
sponse. Rather, with increasing T this Bragg pulse
progressively couples to the charge-mode as the sys-
tem crosses into the SI regime. We therefore label
the measured signals as S� and S↵ for symmetric
and antisymmetric light shifts, instead of Sc and
Ss, with corresponding propagation speeds v� and
v↵. As T is increased, we observe a gradual sup-
pression of the separation between v� and v↵ (Fig
3), which is indicative of the increasing charge-mode
character induced by the antisymmetric excitation
pulse. The extent of this thermal disruption is af-
fected both by the tube-to-tube occupancy variation
and by the density inhomogeneity within each tube,
as relatively low local density inevitably occurs near
the confinement edges of the waveguide.

Criticality of the Yang-Gaudin model

(a) Charge DSF; (b) charge and spin peak  velocities
SILL shows a suppression of spin-change separation  

Peak frequencies of spin and charge

configuration and the latter as the asymmetric one, designated by
subscripts σ and α, respectively. Since the Bragg pulse imparts both a
momentumℏq and an energy quantumℏωper atom,we candetermine
the speed of propagation of the excitations (see “Methods”). The
Bragg-inducedmomentumkick results in outcoupling a fraction of the
atoms, the number of which is proportional to the total momentum
delivered to the ensemble and constitutes the measurement
signal10,12,14. For a spin-balanced sample, the symmetric Bragg pulse
exclusively excites the CDW, and the measured signal is proportional
to the dynamic structure factor (DSF) Sc(q,ω) of the gas42–44, which
encodes the density–density correlations45 in the charge sector. Con-
versely, the antisymmetric Bragg pulse exclusively excites the SDW,
and the measured signal is proportional to the DSF Ss(q,ω), which
encodes the spin-density-spin-density correlations. We extract the
most probable value of the propagation speed, vp, from the measured
peak frequency ωp for each spectrum using the relation vp =ωp/q.

Suppression of spin-charge separation
We have previously exploited this individual addressability of
the CDW/SDW by using Bragg spectroscopy to characterize spin-
charge separation in the SC regime by measuring vc,s as functions of
repulsive interaction14. In this work, we demonstrate that in the SI
regimewhere spin-order fluctuations are dominant, the assumption of
local spin-balance is no longer justified and leads to the loss of indi-
vidual addressability of the CDW/SDW using Bragg processes. To
emphasize this notion, we label the measured signals as Sσ and Sα for
symmetric and antisymmetric light shifts, instead of Sc and Ss, with
corresponding propagation speeds vσ and vα.

Representative Bragg spectra, corresponding to several values
of T, are shown in Fig. 3a. We determine T by fitting the measured
Sσ(q,ω) to a free-fermion theory forwhich the density inhomogeneity
is accounted for by the local density approximation, as in our pre-
vious work12,14. We observe a suppression of the peak excitation
amplitude for the symmetric configuration with an exponential
dependence on T (Fig. 3b), in agreement with a previous theoretical
study of the role of temperature that predicted exponential decay of
correlations with increasing T28. The decay in the Bragg response

arises from the loss of density–density correlations due to the pro-
liferation of holes.

A standard prediction in the SI regime is that only the charge-
mode can propagate coherently, which suggests that the gas will only
respond to a symmetric Bragg configuration (charge mode)29,33. How-
ever, we observe that the measured peak amplitudes are the same for
both configurations within uncertainty (Fig. 3b). While surprising, this
may be because the antisymmetric Bragg configuration excites the
CDW in the SI regime. During the crossover from the SC regime to the
SI regime, the Luttinger liquid will be effectively averaged over an
increasing number of spin configurations that have regions of local
spin imbalance (see Fig. 1a). Because of these regions, induced by
thermal fluctuations, the antisymmetric Bragg configuration no longer
has a locally antisymmetric response. Rather, with increasing T, this
Bragg pulse progressively couples to the charge-mode as the system
crosses into the SI regime.

Spin correlations in the SI regime
Our measurements confirm that in the SI regime, the peak excitation
frequency and the high-energy tails of S(q,ω) for each sector are
identical within their uncertainty (Fig. 3c). This condition is clearly
different from the SC regime,where in addition to the shift inωp due to
the spin-charge separation, the spectra corresponding to SDW exci-
tations have enhanced high-frequency tails that are related to non-
linear interaction effects that are exclusive to the spin sector14. The
match between the symmetric and antisymmetric excitation spectra at
sufficiently high temperatures is indicative of the charge-mode char-
acter of the excitation induced by the antisymmetric pulse.

This argument is validated by observing a gradual suppression of
the difference between vσ and vα (Fig. 4). In the SC regime, we can
clearly distinguish the two fundamental types of density waves (CDWs
and SDWs) due to their distinct propagation speeds. This distinction is
lost in the SI regime and suggests a sole propagating mode, as
expected theoretically29,33. We estimate an upper bound for the
crossover temperatures by evaluating the thermal hierarchy at
the center of a single tube located at the center of the ensemble, where
themaximumoccupancy isN≃ 30.We extract thedensity at the center
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Fig. 3 | Temperature effects on density waves. a Bragg signal corresponding to
symmetric excitation, Sσ(q,ω), for different T. Solid lines are a fit to the Bragg
spectra using a free-fermion theory with fit parameter T (see “Methods”). b Peak
amplitude Sp of the Bragg spectra as a function of T, where empty circles corre-
spond to a symmetric Bragg excitation, Sσ, while filled circles represent the anti-
symmetric excitation, Sα. The dark-gray dashed line is a fit to T, assuming an
exponential dependence, signaling the loss of correlations due to thermal

fluctuations. c Normalized Bragg signals corresponding to symmetric (Sσ(q,ω), red
triangles) and antisymmetric (Sα(q,ω), blue circles) excitations for different T.
Symmetric data and associated fits (solid lines) are the same as in (a). Each data
point in (a) and (c) is the average of at least 20 separate experimental shots. Error
bars represent standard error obtained via bootstrapping (see “Methods” for
details).

Article https://doi.org/10.1038/s41467-023-38767-0

Nature Communications | ��������(2023)�14:3154� 3



Separating Spin and Charge  

Science 376, 1305 (2022)

Notorious difficulties:
Spectral function
Dynamical structure factor
Quantum transport and nonequilibrium physics   

17 JUNE 2022 • VOL 376 ISSUE 6599    1281SCIENCE   science.org

how previously transcribed DNA 
rewraps the nucleosome. The 
finding provides a structural 
basis of how nucleosomes, and 
consequently epigenetic marks, 
are retained during transcrip-
tion. —DJ

Science, abo3851, this issue p. 1313

CORONAVIRUS

First off the COVID block
The severe acute respira-
tory syndrome coronavirus 2 
(SARS-CoV-2) pandemic has 
been characterized by waves of 
transmission initiated by new 
variants replacing older ones. 
Given this pattern of emer-
gence, there is an obvious need 
for the early detection of novel 
variants to prevent excess 
deaths. Obermeyer et al. have 
developed a Bayesian model to 
compare relative transmissibil-
ity of all viral lineages. Using 
this model, emerging lineages 
can be spotted together with 
the mutations that contribute 
toward transmissibility, not 
only in Spike, but also in other 
viral proteins. The model can 
prioritize lineages as they 
emerge for public health con-
cern. —CA

Science, abm1208, this issue p. 1327

MOLECULAR BIOLOGY

How to make 
selenoproteins
In all domains of life, the 
essential trace element 
selenium is incorporated into 
selenoproteins as the amino 
acid selenocysteine during 
protein translation. Specialized 
protein and RNA factors assist 
selenocysteine transfer RNA 
to reinterpret specific UGA 
codons, not as a signal to end 
protein synthesis, but rather 
as a sign for selenocysteine 
insertion. Hilal et al. used cryo–
electron microscopy to trap 
and visualize the mammalian 
ribosome as it decodes the 
selenocysteine UGA codon. An 
unforeseen extended network 
of interactions between key 
molecular players facilitates 
the recoding event, thereby 
providing a basis for further 

TRANSCRIPTION

When Pol II meets 
nucleosome
Eukaryotic cells organize their 
large genomes into a compacted 
structure called chromatin. 
The condensed structure of 

chromatin, with its fundamental 
unit, the nucleosome, repre-
sents a challenge to nucleic 
acid–transacting machines 
including RNA polymerase II 
(Pol II), the enzyme responsible 
for the transcription of most 
protein-coding genes. How RNA 

Pol II overcomes nucleosomes 
without disrupting chromatin 
organization remains unknown. 
Using cryo–electron microscopy, 
Filipovski et al. provide struc-
tural snapshots of a complex 
between mammalian RNA Pol 
II and a nucleosome that show 

I N  S C I E N C E  J O U R NA L S

RESEARCH
Edited by 
Michael Funk

Artist’s conception of a spin excitation propagating through a one-dimensional gas of fermionic atoms

QUANTUM GASES

Separating spin and charge

I
n one-dimensional fermionic systems, spin and charge excitations can decouple from 
each other. This so-called spin-charge separation has been detected in solids and cold-
atom systems held in optical lattices. Senaratne et al. observed spin-charge separation in 
one-dimensional Fermi gases of lithium atoms in the absence of a lattice structure within 
the gas. The researchers were able to excite the spin and charge excitation modes inde-

pendently from each other and measure their velocities as a function of the strength of the 
atomic interactions. —JS   Science, abn1719, this issue p. 1305
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Contact (interaction driven)

Contact Susceptibilities

Maxwell relations
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To better capture the interaction-driven effects,
we define:

New Result



• Interaction-driven phase transitions
     (II-IV) and (V-IV)
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universal scaling behaviour driven by interaction.
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• Contact susceptibilities and applications 
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Quantum Cooling
• Entropy peaks near phase boundaries.
• Isentropic process:

maximum entropy à minimum T

A potentially novel way of cooling
quantum gases in lattice!

where CH=T!!S /!T"#H. It will become clear below that !H
describes the magnetocaloric effect.

Let us shortly recapitulate the main results of Ref. 1. The
main observation is that ! diverges at a quantum-critical
point, while it is finite in all noncritical systems or close to
generic classical critical points. This can most easily be seen
in cases where scaling applies !i.e., for systems below the
upper critical dimension, d+z"4" and where the qualitative
behavior of ! can be extracted from the scaling form of the
free energy

f!r,T" = b−!d+z"f!rb1/#,Tbz" , !5"

where b is an arbitrary scaling parameter, d is the dimension-
ality, and # and z are the correlation length and dynamical
critical exponent, respectively. As can be read off directly
from Eq. !4", ! scales like 1/r or equivalently,

dim$!cr% = − dim$r% = − 1/# . !6"

Accordingly, one obtains directly from !5"

!cr $
1

T1/#z !7"

in the quantum-critical regime, i.e., for T% #r##z !see Fig. 1".
On the other hand, in the two low-temperature regimes on
the right- and left-hand sides of the QCP in Fig. 1, the Grü-
neisen parameter diverges with the inverse of the control
parameter r$ p− pc,

!cr = − Gr
1

Vm!p − pc"
. !8"

Surprisingly, due to the third law of thermodynamics, i.e., by
assuming a vanishing residual entropy at zero temperature, it
is possible to determine even the prefactor Gr of the diver-
gence from a scaling analysis. It is given by a simple com-
bination of critical exponents

Gr = − #
y0

±z − d

y0
± , !9"

where the exponents y0
+ and y0

− are associated with the low-
temperature behavior of the specific heat, Cp&Ty0

±
, on the

right- and left-hand sides of the QCP, respectively. As was
shown in Ref. 1, these results might even hold !up to pos-
sible logarithmic corrections" in situations where the simple
scaling Ansatz !5" fails, i.e., for systems above the upper
critical dimension.

Equation !8" implies not only a divergence of ! but also a
sign change !assuming that Gr has the same sign on both
sides of the QCP". Obviously the question arises where and
how this drastic sign change takes place in the finite-
temperature phase diagram. This will be one of the main
topics discussed in this paper.

The following section will discuss the sign changes using
qualitative arguments. Section III investigates quantum criti-
cal points where there is no phase transition at finite tem-
perature and briefly discusses experiments close to metamag-
netic quantum phase transitions. In Sec. IV we study how
thermal expansion, Grüneisen parameter, and magnetocaloric
effects are influenced by a phase-transition at finite T in
proximity to a QCP. An overview of our main results is given
in Sec. V.

II. SIGN OF THE GRÜNEISEN PARAMETER

In order to obtain insight into the meaning of the sign of
the Grüneisen parameter it proves useful to consider a line of
constant entropy within the pressure-temperature plane
!p ,T",

dS = ' !S

!T
'

p
dT + ' !S

!p
'

T
dp=! 0. !10"

Using the definition of the thermal expansion and the specific
heat we obtain for !,

! =
1

VmT
'dT

dp
'

S
. !11"

The Grüneisen parameter measures the variation of tempera-
ture upon pressure changes under constant entropy condi-
tions. The Grüneisen parameter thus corresponds to a
pressure-caloric effect. As already alluded to, for a QPT that
can be driven by magnetic field the quantity analogous to the
Grüneisen parameter is the magnetocaloric effect

!H = −
!dM/dT"H

CH
=

1
T
' dT

dH
'

S
, !12"

where CH is the specific heat at constant H. Experimentally,
the quantities ! and !H can be directly accessed by measur-
ing the change in temperature at constant entropy upon pres-
sure and magnetic field variations, respectively. In math-
ematical terms both yield the slope of the constant entropy
curves, i.e., isentropes in the phase diagram.

How do the isentropes look near a quantum phase transi-
tion? We expect that we have an accumulation of entropy

FIG. 1. Different regimes in the phase diagram of a quantum
phase transition. The dotted lines correspond to crossovers between
the low-T and the quantum critical regime, T&#r##z. The control
parameter might be sensitive to pressure and/or magnetic field. The
solid line shows a generic isentrope along which the entropy is
constant, dS=0.

M. GARST AND A. ROSCH PHYSICAL REVIEW B 72, 205129 !2005"

205129-2

Adiabatic  interaction ramping cooling!Also see Adiabatic demagnetization cooling: 

Wolf et. al. PNAS, 108, 6862 (2011)

Also a large change of Ω?@a 

Isentrope:

|Å =
\L
\^

du+ 
\L
\`

dT=0

New result 



• Contact susceptibilities and applications 
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Quantum Cooling
• Entropy peaks near phase boundaries.
• Isentropic process:

maximum entropy à minimum T

A potentially novel way of cooling
quantum gases in lattice!

1) A->B: adiabatically ramp up;
2) B->C: hot isochore process;
3)  C->D: adiabatically ramp down;
4) D->A: cold  isochore process.

40

II IV0.46 0.48 0.5
-5

-4

-3 (a)

IV V2.078 2.0815 2.085
-5

-4

-3 (b)

FIG. 16: Plot of isentropic lines in T − u plane for the interaction-driven phase transitions II-IV (a) and IV-V (b) at B = 0.15
and µ = −2.5, of which the temperature on the vertical axis is logarithmic. The purple dotted lines in (b) denote the interaction
driven Otto cycle, where the stages A and B (or stages C, D) lie on the isentropic lines, see the main text.

→ B, the working substance is adiabatically ramped up from the target temperature Ttarget to the nonthermal higher
temperature stage B. Then through a hot isochore process B → C, the working substance comes into contact with the
ambient, transferring heat to the high temperature source. While the temperature of working substance reduces to
the one at the thermal state C. Next, for the isentrope process C → D, the working substance is adiabatically ramped
down to the low temperature stage D. This is an opposite process contrast to the A → B. Finally, for the isochore
process D → A, the working substance contacts with the target object, absorbing heat from the target material and
reaching the thermal state A. Consequently, the target object is cooled down by this cycle.
Now let us determine the lowest temperature which can be reached through an isentropic process indicated in the

figure 16. From equations (176)-(180), the phase II (V) contains one charge (spin) degrees of freedom. Consequently,
their entropy sL1 and sL2 are given by (41) and (42), respectively, namely,

sL1 ≈
πTL1

3vc
, (216)

sL2 ≈
πTL2

3vs
. (217)

Comparing isentropic lines with the same entropy for phase II, IV and V, for example s = 0.00008 in figure 16, the
temperature of TLLC (phase II) is higher than that of TLLS (phase V) since charge velocity vc changes faster than
spin velocity vs when the interaction is changed around the critical point, i.e.,

TL1 > TL2. (218)

On the other hand, when it approaches the QCP, i.e., at the extreme low temperature for each isentropic line, entropy
have explicit expressions for the transition II-IV and IV-V

ss1 ≈ λ3π
1/2σ1(0)(ε

′′

1 (0)/2)
−1/2T 1/2

c1 , (219)

ss2 ≈ λ3π
1/2ρ(π)(−κ

′′

(π)/2)−1/2T 1/2
c2 , (220)

respectively, where λ3 = xLi1/2 (−ex)− 3/2Li3/2 (−ex) ≈ 1.3467.
With the above analysis, we observe that the entropy shows a square root dependence on the temperature at

extreme point, it is proportional to temperature in the Luttinger liquid. Therefore, considering an isentropic cooling
process through the ramping up or down in the T − u plane around critical phase transitions from II to IV or from
V to IV, see figure 16, the minimum temperatures can be reached

II-IV:
T 1/2
c1

TL1
=

π1/2(ε
′′

1 (0)/2)
1/2

3λ3vcσ1(0)
, (221)

V-IV:
T 1/2
c2

TL2
=

π1/2(−κ
′′

(π)/2)1/2

3λ3vsρ(π)
, (222)

respectively. A brief discussion about interaction-driven quantum cooling is given in [132]. Based on previous results

Isentropic lines   
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Quantum Transport
Kubo formulas for conductivities 

Generalized hydrodynamics (GHD) 

Bosonization , Bethe ansatz
Transport Coefficients in spin chain 
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equation of motion. For the total spin current J s =
P
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j
s

`
we have, in particular,
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leading to a current density
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Using the Jordan-Wigner transformation (1.3) we see that in terms of spinless fermions this
corresponds to a particle current, i.e., the di↵erence between particles moving to the left and
to the right.

Similarly, we can derive the thermal current operator J th =
P

`
j
th
`

by the continuity
equation

@th`,`+1 = �i[h`,`+1, H] = �(jth
`

� j
th
`�1) (2.3)

where H = H
0 � h

P
`
S
z

`
=

P
`
h`,`+1 =

P
`
(h0

`,`+1 � hS
z

`
). The thermal current thus splits

into two parts, J th = J
E � hJ

s, where J
s is the spin current (2.2) and J

E the energy current
obtained from the continuity equation (2.3) for the case of zero magnetic field. In other
words, at finite magnetic fields there is a contribution to the thermal current due to particle
transport. Calculating the commutator in (2.3) for h = 0, leads to an energy current density
j
E

`
acting on three neighbouring sites which can be written in compact form as

j
E

`
= J

2
X

`

S` · (S0
`�1 ⇥ S0

`+1), S0
`
= (Sx

`
, S

y

`
,�S

z

`
) . (2.4)

Alternatively, the spin current can also be derived by putting a flux � through an XXZ
ring in the fermionic formulation (1.2). The flux then couples via the Peierls substitution

c
†
`
c`+1 ! c

†
`
c`+1e�iA`,`+1 . Here A`,`+1 is the vector potential along the bond with

P
`
A`,`+1 =

�. The current operator is then given by j
s

`
= � @H

@A`,`+1

��
A!0

. Furthermore, the diamagnetic

term can be obtained as @
2
H

@A2

��
A!0

= Hkin where Hkin is the hopping part of the Hamiltonian
(1.2).

The transport coe�cients relate the currents to the gradients in temperature and magnetic
field ✓

J th

J s

◆
=

✓
th C

th
s

C
s

th �s

◆✓
�rT

rh

◆
(2.5)

with th being the thermal conductivity and �s the spin conductivity. The coe�cients C
th
s

and C
s

th describe the creation of a thermal current due to a magnetic field gradient and of
a spin current due to a thermal gradient, respectively. The latter is the spin Seebeck e↵ect
which has been studied in much detail for ferromagnets in the field of spintronics. From the
Onsager relation [1] it follows that Cth

s = TC
s

th.
The, in general, complex and frequency dependent transport coe�cients are decomposed

as, for example,
�
0
s(k = 0,!) = 2⇡Ds�(!) + �

reg
s (!) (2.6)

where �
0
s(k,!) denotes the real part of the spin conductivity at momentum k and frequency

!. Ds is the spin Drude weight, and �
reg
s (!) the regular part of the conductivity. We can

write down a similar decomposition for the thermal conductivity th(!). A non-zero Drude
weight signals ballistic transport, i.e. a diverging dc conductivity. Physically, this means that
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y

`
S
x

`+1) =
iJ

2
(S+

`
S
�
l+1 � S

�
`
S
+
l+1) . (2.2)

Using the Jordan-Wigner transformation (1.3) we see that in terms of spinless fermions this
corresponds to a particle current, i.e., the di↵erence between particles moving to the left and
to the right.

Similarly, we can derive the thermal current operator J th =
P

`
j
th
`

by the continuity
equation

@th`,`+1 = �i[h`,`+1, H] = �(jth
`

� j
th
`�1) (2.3)

where H = H
0 � h

P
`
S
z

`
=

P
`
h`,`+1 =

P
`
(h0

`,`+1 � hS
z

`
). The thermal current thus splits

into two parts, J th = J
E � hJ

s, where J
s is the spin current (2.2) and J

E the energy current
obtained from the continuity equation (2.3) for the case of zero magnetic field. In other
words, at finite magnetic fields there is a contribution to the thermal current due to particle
transport. Calculating the commutator in (2.3) for h = 0, leads to an energy current density
j
E

`
acting on three neighbouring sites which can be written in compact form as

j
E

`
= J

2
X

`

S` · (S0
`�1 ⇥ S0

`+1), S0
`
= (Sx

`
, S

y

`
,�S

z

`
) . (2.4)

Alternatively, the spin current can also be derived by putting a flux � through an XXZ
ring in the fermionic formulation (1.2). The flux then couples via the Peierls substitution

c
†
`
c`+1 ! c

†
`
c`+1e�iA`,`+1 . Here A`,`+1 is the vector potential along the bond with

P
`
A`,`+1 =

�. The current operator is then given by j
s

`
= � @H

@A`,`+1

��
A!0

. Furthermore, the diamagnetic

term can be obtained as @
2
H

@A2

��
A!0

= Hkin where Hkin is the hopping part of the Hamiltonian
(1.2).

The transport coe�cients relate the currents to the gradients in temperature and magnetic
field ✓

J th

J s

◆
=

✓
th C

th
s

C
s

th �s

◆✓
�rT

rh

◆
(2.5)

with th being the thermal conductivity and �s the spin conductivity. The coe�cients C
th
s

and C
s

th describe the creation of a thermal current due to a magnetic field gradient and of
a spin current due to a thermal gradient, respectively. The latter is the spin Seebeck e↵ect
which has been studied in much detail for ferromagnets in the field of spintronics. From the
Onsager relation [1] it follows that Cth

s = TC
s

th.
The, in general, complex and frequency dependent transport coe�cients are decomposed

as, for example,
�
0
s(k = 0,!) = 2⇡Ds�(!) + �

reg
s (!) (2.6)

where �
0
s(k,!) denotes the real part of the spin conductivity at momentum k and frequency

!. Ds is the spin Drude weight, and �
reg
s (!) the regular part of the conductivity. We can

write down a similar decomposition for the thermal conductivity th(!). A non-zero Drude
weight signals ballistic transport, i.e. a diverging dc conductivity. Physically, this means that
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In writing Eq. (2.15) we take for granted that the Mazur equality remains valid in the ther-
modynamic limit, i.e., that we can take the limit N ! 1 first before taking t ! 1 as is
required in thermodynamics. Physically this is fairly obvious since the current density-density
correlator hj`(t)j0(0)i is only non-zero (up to exponentially small tails) within the light cone
set by the Lieb-Robinson bounds. I.e., for any time t it is su�cient to consider a finite system
of size N � vLRt where vLR is the Lieb-Robinson velocity. This point is discussed in more
detail in Ref. [6]. We will see later that Eq. (2.15) is proportional to the Drude weight D(T ).

If J is a local operator—this is the case for the XXZ chain considered here—then hJQki2 ⇠
N

2. Therefore only those conserved charges contribute to the Mazur bound in the thermo-
dynamic limit for which

hQ2
k
i ⇠ N . (2.16)

Operators who fulfill the strict locality condition, Eq. (2.7), also fulfill the condition (2.16).
Additional conserved charges, however, can exist which are not of the form (2.7) but do
fulfill Eq. (2.16). These charges are sometimes called quasi-local and play an important role
in understanding the spin transport properties of the XXZ chain. In addition to conserved
charges which are local in the sense of Eq. (2.16), every quantum mechanical system also has
an infinite number of non-local conserved charges. An example are the projectors Pn = |nihn|
onto the extended eigenstates |ni of the system. Such charges, however, do not a↵ect the
transport properties of the system.

2.2 Kubo formula

Next, we want to discuss how to calculate the spin conductivity �s(!) in linear response and
how to relate Eq. (2.15) to the Drude weight. The Kubo formula is obtained straightforwardly
in linear response theory and is given by

�s(!) =
i

!


hHkini
N

� i

N

Z 1

0
dt ei!th[J s(t),J s(0)]i

�
. (2.17)

The first term is the diamagnetic contribution while the second term is the retarded current-
current correlation function. For a derivation see, for example, the textbook by Mahan [1].
Using again a spectral representation, we can perform the integral over time and obtain

�s(!) =
i

!N

"
hHkini+

X

n,m

(pn � pm)|hn|J s|mi|2

! � (Em � En) + i�

#
(2.18)

with pn = exp(��En)/Z and � = 1/T . We now use the relation

1

!

1

! + E
=

1

E

✓
1

!
� 1

! + E

◆
(2.19)

to split Eq. (2.18) into two parts

�s(!) =
i

!N

"
hHkini+

X

n,m

(pn � pm)

En � Em

|hn|J s|mi|2
#
� i

N

X

n,m

(pn � pm)

En � Em

|hn|J s|mi|2

! � (Em � En)
.

(2.20)
The term in the square brackets is the charge or Meissner sti↵ness �s. It can be obtained

from the free energy f(�) of an XXZ ring with a flux � through the ring by �s = @
2
f

@�2

��
�=0

.
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The charge sti↵ness is proportional to the superfluid density ns(T ) which is zero in the ther-
modynamic limit for a strictly one-dimensional system.

We now take the real part of the last term in Eq. (2.20) using the relation

1

! � E
= P

1

! � E
� i⇡�(! � E) (2.21)

to obtain

�
0
s(!) = � ⇡

N

X

n,m

pn � pm

En � Em

|hn|J 2|mi|2�(! � (Em � En)) (2.22)

=
�⇡

N

X

En=Em

pn|hn|J 2|mi|2�(!) + ⇡

N

X

En 6=Em

pn � pm

Em � En

|hn|J 2|mi|2�(! � (Em � En)) .

Comparing with Eq. (2.6) we see that the first term in the second line is proportional to the
Drude weight while the second term describes the regular part.

Using a spectral representation it is also straightforward to show that Eq. (2.22) can be
rewritten as a time-dependent current-current correlation function

�
0
s(!) =

1� e��!

2!N

Z 1

�1
ei!thJ s(t)J s(0)i . (2.23)

This relation is known as the fluctuation-dissipation theorem because for generic, non-integrable
models it connects the current-current fluctuations to the dissipative part of the conductivity.

For an integrable system, we can split the correlation function into a ballistic part which
persists at infinite times and a regular part which decays in time

C(t) = lim
N!1

hJ s(t)J s(0)i/N = lim
t!1

lim
N!1

hJ s(t)J s(0)i/N
| {z }

(J sJ s)1

+C
reg
s (t) . (2.24)

Here C
reg
s (t) is a function which vanishes for t ! 1 and gives a non-singular contribution to

the conductivity �
0
s(!). Plugging (2.24) into (2.23) yields

�
0
s(!) =

1� e��!

2!

Z 1

�1
dt ei!t [(J sJ s)1 + C

reg
s (t)]

= 2⇡
(JJ )1

2T
�(!) +

1� e��!

2!
C

reg
s (!) . (2.25)

Comparing with the definition of the Drude weight and the regular part of the conductivity
(2.6) we find the important relation

Ds =
(J sJ s)1

2T
= lim

t!1
lim

N!1

1

2NT
hJ s(t)J s(0)i . (2.26)

I.e., we have now shown that the expression in (2.15) is indeed the Drude weight and that
this quantity is directly related to the part of the current which does not decay. Furthermore,

�
reg
s (! ! 0) = �

Z 1

0
dtC

reg
s (t) = �s(�)Ds (2.27)
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The charge sti↵ness is proportional to the superfluid density ns(T ) which is zero in the ther-
modynamic limit for a strictly one-dimensional system.

We now take the real part of the last term in Eq. (2.20) using the relation

1

! � E
= P

1

! � E
� i⇡�(! � E) (2.21)

to obtain
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Comparing with Eq. (2.6) we see that the first term in the second line is proportional to the
Drude weight while the second term describes the regular part.

Using a spectral representation it is also straightforward to show that Eq. (2.22) can be
rewritten as a time-dependent current-current correlation function

�
0
s(!) =

1� e��!

2!N

Z 1

�1
ei!thJ s(t)J s(0)i . (2.23)

This relation is known as the fluctuation-dissipation theorem because for generic, non-integrable
models it connects the current-current fluctuations to the dissipative part of the conductivity.

For an integrable system, we can split the correlation function into a ballistic part which
persists at infinite times and a regular part which decays in time

C(t) = lim
N!1

hJ s(t)J s(0)i/N = lim
t!1

lim
N!1

hJ s(t)J s(0)i/N
| {z }

(J sJ s)1

+C
reg
s (t) . (2.24)

Here C
reg
s (t) is a function which vanishes for t ! 1 and gives a non-singular contribution to

the conductivity �
0
s(!). Plugging (2.24) into (2.23) yields

�
0
s(!) =
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Z 1
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dt ei!t [(J sJ s)1 + C

reg
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= 2⇡
(JJ )1

2T
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s (!) . (2.25)

Comparing with the definition of the Drude weight and the regular part of the conductivity
(2.6) we find the important relation

Ds =
(J sJ s)1

2T
= lim

t!1
lim

N!1

1

2NT
hJ s(t)J s(0)i . (2.26)

I.e., we have now shown that the expression in (2.15) is indeed the Drude weight and that
this quantity is directly related to the part of the current which does not decay. Furthermore,

�
reg
s (! ! 0) = �

Z 1

0
dtC

reg
s (t) = �s(�)Ds (2.27)
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The charge sti↵ness is proportional to the superfluid density ns(T ) which is zero in the ther-
modynamic limit for a strictly one-dimensional system.

We now take the real part of the last term in Eq. (2.20) using the relation

1

! � E
= P

1

! � E
� i⇡�(! � E) (2.21)

to obtain
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Comparing with Eq. (2.6) we see that the first term in the second line is proportional to the
Drude weight while the second term describes the regular part.

Using a spectral representation it is also straightforward to show that Eq. (2.22) can be
rewritten as a time-dependent current-current correlation function

�
0
s(!) =

1� e��!

2!N

Z 1

�1
ei!thJ s(t)J s(0)i . (2.23)

This relation is known as the fluctuation-dissipation theorem because for generic, non-integrable
models it connects the current-current fluctuations to the dissipative part of the conductivity.

For an integrable system, we can split the correlation function into a ballistic part which
persists at infinite times and a regular part which decays in time

C(t) = lim
N!1

hJ s(t)J s(0)i/N = lim
t!1

lim
N!1

hJ s(t)J s(0)i/N
| {z }

(J sJ s)1

+C
reg
s (t) . (2.24)

Here C
reg
s (t) is a function which vanishes for t ! 1 and gives a non-singular contribution to

the conductivity �
0
s(!). Plugging (2.24) into (2.23) yields

�
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Z 1
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dt ei!t [(J sJ s)1 + C

reg
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= 2⇡
(JJ )1

2T
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2!
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s (!) . (2.25)

Comparing with the definition of the Drude weight and the regular part of the conductivity
(2.6) we find the important relation

Ds =
(J sJ s)1

2T
= lim

t!1
lim

N!1

1

2NT
hJ s(t)J s(0)i . (2.26)

I.e., we have now shown that the expression in (2.15) is indeed the Drude weight and that
this quantity is directly related to the part of the current which does not decay. Furthermore,

�
reg
s (! ! 0) = �

Z 1

0
dtC

reg
s (t) = �s(�)Ds (2.27)
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The charge sti↵ness is proportional to the superfluid density ns(T ) which is zero in the ther-
modynamic limit for a strictly one-dimensional system.

We now take the real part of the last term in Eq. (2.20) using the relation

1
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= P

1

! � E
� i⇡�(! � E) (2.21)

to obtain
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Comparing with Eq. (2.6) we see that the first term in the second line is proportional to the
Drude weight while the second term describes the regular part.

Using a spectral representation it is also straightforward to show that Eq. (2.22) can be
rewritten as a time-dependent current-current correlation function

�
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1� e��!

2!N

Z 1

�1
ei!thJ s(t)J s(0)i . (2.23)

This relation is known as the fluctuation-dissipation theorem because for generic, non-integrable
models it connects the current-current fluctuations to the dissipative part of the conductivity.

For an integrable system, we can split the correlation function into a ballistic part which
persists at infinite times and a regular part which decays in time

C(t) = lim
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hJ s(t)J s(0)i/N = lim
t!1

lim
N!1

hJ s(t)J s(0)i/N
| {z }

(J sJ s)1

+C
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s (t) . (2.24)

Here C
reg
s (t) is a function which vanishes for t ! 1 and gives a non-singular contribution to

the conductivity �
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s(!). Plugging (2.24) into (2.23) yields
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dt ei!t [(J sJ s)1 + C
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= 2⇡
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2T
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s (!) . (2.25)

Comparing with the definition of the Drude weight and the regular part of the conductivity
(2.6) we find the important relation

Ds =
(J sJ s)1

2T
= lim

t!1
lim

N!1

1

2NT
hJ s(t)J s(0)i . (2.26)

I.e., we have now shown that the expression in (2.15) is indeed the Drude weight and that
this quantity is directly related to the part of the current which does not decay. Furthermore,

�
reg
s (! ! 0) = �

Z 1

0
dtC

reg
s (t) = �s(�)Ds (2.27)
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The charge sti↵ness is proportional to the superfluid density ns(T ) which is zero in the ther-
modynamic limit for a strictly one-dimensional system.

We now take the real part of the last term in Eq. (2.20) using the relation
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� i⇡�(! � E) (2.21)

to obtain

�
0
s(!) = � ⇡

N

X

n,m

pn � pm

En � Em

|hn|J 2|mi|2�(! � (Em � En)) (2.22)

=
�⇡

N

X

En=Em

pn|hn|J 2|mi|2�(!) + ⇡

N

X

En 6=Em

pn � pm

Em � En

|hn|J 2|mi|2�(! � (Em � En)) .

Comparing with Eq. (2.6) we see that the first term in the second line is proportional to the
Drude weight while the second term describes the regular part.

Using a spectral representation it is also straightforward to show that Eq. (2.22) can be
rewritten as a time-dependent current-current correlation function

�
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1� e��!

2!N

Z 1

�1
ei!thJ s(t)J s(0)i . (2.23)

This relation is known as the fluctuation-dissipation theorem because for generic, non-integrable
models it connects the current-current fluctuations to the dissipative part of the conductivity.

For an integrable system, we can split the correlation function into a ballistic part which
persists at infinite times and a regular part which decays in time

C(t) = lim
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hJ s(t)J s(0)i/N = lim
t!1

lim
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hJ s(t)J s(0)i/N
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(J sJ s)1

+C
reg
s (t) . (2.24)

Here C
reg
s (t) is a function which vanishes for t ! 1 and gives a non-singular contribution to

the conductivity �
0
s(!). Plugging (2.24) into (2.23) yields
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0
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reg
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= 2⇡
(JJ )1
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Comparing with the definition of the Drude weight and the regular part of the conductivity
(2.6) we find the important relation

Ds =
(J sJ s)1

2T
= lim

t!1
lim

N!1

1

2NT
hJ s(t)J s(0)i . (2.26)

I.e., we have now shown that the expression in (2.15) is indeed the Drude weight and that
this quantity is directly related to the part of the current which does not decay. Furthermore,

�
reg
s (! ! 0) = �

Z 1

0
dtC

reg
s (t) = �s(�)Ds (2.27)
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where we have used the Einstein relation in the second step to introduce the di↵usion constant
Ds and the static spin susceptibility �s. In addition to the Drude weight which is related via
Eq. (2.26) to the part of the current which is protected by local conservation laws and does
not decay in time, there is thus, in general, also a di↵usive part given by the decaying part of
the current with di↵usion constant

Ds =
�

�(�)

Z 1

0
dt [C(t)� 2TDs] . (2.28)

We can now combine (2.26) with the Mazur formula (2.15) to obtain a bound or the exact
Drude weight by considering overlaps of the conserved charges with the current operator. The
advantage of this approach is that it maps a dynamic onto a static problem. This approach
has been used in Refs. [2, 7–9].

Similar results can also be obtained for the thermal conductivity. A subtle point is the
proper definition of the currents and forces which cause these currents to flow, see Ref. [1].

One possible choice is J s = M
11

T
rh and J E = M

22r
�
1
T

�
. Comparing with (2.5) we see that

there is an additional factor of 1/T in the definition of the thermal conductivity th. For the
thermal Drude weight at zero field one finds, in particular,

Dth = lim
t!1

lim
N!1

1

2NT 2
lim
t!1

hJ E(t)J E(0)i = lim
N!1

h(J E)2i
2NT 2

(2.29)

where we have used in the last step that [J E
, H] = 0 for the XXZ chain.

3 Thermal Drude weight

The thermal Drude weight is particularly easy to calculate because it is given by the static
expectation value of a conserved charge, see (2.29). In the following we briefly sketch how to
obtain Dth using the standard thermodynamic Bethe ansatz (TBA) formalism for anisotropies
� = cos(�) with � = ⇡/m. We note that the first derivation of the thermal Drude weight was
carried out by Klümper and Sakai [10] using the quantum transfer matrix formalism. The
latter approach has the advantage that the string hypothesis is not needed and results for
arbitrary � are obtained.

We consider only the case h = 0. First, we define a generalized partition function and
generalized free energy

Z = tr exp(��H + �J
E), f(�,�) = � T

N
lnZ . (3.1)

In TBA we can write this free energy density as

f(�,�) = � T

2⇡

mX

`=1

Z
d✓ "`(✓)�` ln[1 + ⌘

�1
`

(✓)]. (3.2)

Here "` are the bare eigenenergies. The variables �` = sign(g`) are the signs of auxiliary
rational numbers associated to string solutions as defined in [11]. For the case of anisotropy
� = ⇡/m the g` have a particularly simple relation to string length n`

g` = m� n`, n` = ` for ` = 1, . . . ,m� 1 and gm = �1, nm = 1. (3.3)
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representation

lim
⇤!1

1

⇤

Z ⇤

0
dt hJ (t)J (0)i =

X

n,m

e��En

Z
hn|J |mihm|J |ni lim

⇤!1

1

⇤

Z ⇤

0
dt eit(En�Em)

=
En=EmX

n,m

e��En

Z
|hn|J |mi|2 , (2.9)

where Z = tr {e��H} is the partition function. Here we have used that taking the limit yields

lim
⇤!1

ei⇤(En�Em) � 1

i⇤(En � Em)
=

⇢
0, En 6= Em

1, En = Em

. (2.10)

Without loss of generality, we can assume that we have a complete set of Hermitian
conserved charges Qk, [H,Qk] = 0, which are orthogonal hQkQli = hQ2

k
i�kl. We can then

split the current operator into a part which is diagonal in the energy eigenbasis and a part
which is o↵-diagonal. The diagonal part can then be expanded in Qk:

J =
X

k

akQk + J 0
, with hn|J 0|mi = 0 if En = Em

) hQlJ i =
X

k

ak hQlQki| {z }
hQ2

l i�k,l

+ hQlJ 0i| {z }
=0

) al =
hQlJ i
hQ2

l
i

(2.11)

Keeping in mind that hn|J 0|mi = 0 if En = Em, we can therefore write the time average as
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En=EmX

n,m

e��En

Z

X

k,l

hJQkihJQli
hQ2

k
ihQ2

l
i

hn|Qk|mihm|Ql|ni (2.12)
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En=EmX

n,m

e��En

Z
hn|Qk|mihm|Ql|ni =

X

n,m

e��En

Z
hn|Qk|mihm|Ql|ni (2.13)

=
X

n

e��En

Z
hn|QkQl|ni = hQkQli = �klhQ2

k
i .

This leads us to the final result
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⇤!1

1

⇤

Z ⇤

0
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X

k

hJQki2

hQ2
k
i

. (2.14)

If we find any conserved charge with hJQki 6= 0 then (2.14) provides a lower bound for
the time-averaged current-current correlation function in a finite system because the r.h.s. of
Eq. (2.14) is strictly positive. The relation is then called theMazur inequality and the obtained
bound the Mazur bound.

In the thermodynamic limit, N ! 1, we expect the current-current correlation function
to equilibrate. If this is the case, then the time average becomes dominated by the constant
equilibrium value, thus

lim
t!1

lim
N!1

1

2NT
hJ (t)J (0)i = lim

N!1

1

2NT

X

k

hJQki2

hQ2
k
i

. (2.15)
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Diffusion in GHD:

(I is the index set indexing the conserved quantities). A homogeneous, stationary,
maximal entropy state has density matrix formally written as

Z�1e�
P

i �iQi . (2.3)

In inhomogeneous, non-stationary situations, relaxation occurs within fluid cells which
are large enough with respect to microscopic scales, and small enough with re-
spect to the variation lengths and times, the latter therefore assumed to be large.
Since a maximal entropy state is completely characterised by the averages of the
local (or quasi-local) conserved densities within it, according to this idea, a state
at a time slice t is completely determined by the profiles of conserved densities
{q̄i(x, t) := hqi(x, t)i : x 2 R, i 2 I}. This means that the state of the system
on the time slice t – that is, the set of all averages of all local observables at t
– can be described in terms of a reduced number of degrees of freedom, the set
{q̄i(x, t) : x 2 R, i 2 I}, instead of the exact density matrix, or many-body distribu-
tion, at t. This reduction of the number of degrees of freedom is the main postulate
of hydrodynamics. It is expected to provide a good approximation to the evolution
(in an asymptotic sense) when variations in space and time occur on lengths which
are large enough.

Consider the continuity equation for the conserved densities and currents (an
operatorial equation, direct consequence of the dynamics of the system),

@tqi(x, t) + @xji(x, t) = 0. (2.4)

Hydrodynamics is a theory for the evolution of the mean values of these operators

@thqi(x, t)i + @xhji(x, t)i = 0. (2.5)

By the main postulate of hydrodynamics, the average currents hji(x, t)i may depend
on the densities q̄j(y, t) at all points y and index j, but at identical time,

hji(x, t)i =: j̄i[q̄·(·, t)](x, t). (2.6)

Since entropy maximisation is supposed to occur within local fluid cells when variation
lengths are large, it is natural to assume that the functional j̄i[q̄·(·, t)] depends on the
values q̄j(y, t) for all j but only for y near to x. We thus express it in a derivative
expansion,

j̄i[q̄·(·, t)](x, t) = Fi(q̄·(x, t)) � 1

2

X

j2I
D j

i (q̄·(x, t))@xq̄j(x, t) + O
�
@2
xq̄·(x, t)

�
(2.7)

where both j̄i(q̄·(x, t)) and D j
i (q̄·(x, t)) are functions of the charge densities at position

x, t only. As consequence from eqs.(2.5,2.7), by neglecting higher order in derivatives
we have (with implicit summation over repeated indices)

@tq̄i(x, t) + @xFi(q̄·(x, t)) � 1

2
@x

�
D j

i (q̄·(x, t)) @xq̄j(x, t)
�

= 0. (2.8)

The first two terms correspond to the Euler equation and the last one to the Navier-
Stokes correction.
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Navier-Stokes Equation

Currents depend on  charge densities nearby their locations 
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i �iQi . (2.3)
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Two-point correlation & Static susceptibilities  

In ordinary hydrodynamics, the derivative expansion is usually expected to be
meaningful (at least if there is no sub/super-di↵usion) only up to the order written
– higher order terms in the derivative expansion are usually not predictive, because
at that order, the assumption of the reduction of the number of degrees of freedom
is incorrect.

The form of the first term in (2.7), Fi(q̄·(x, t)), is a direct consequence of the
thermodynamics of the model: indeed, it can be obtained by assuming the conserved
densities (hence the state) to be homogeneous. The function Fi(q̄·) expresses the con-
served currents as functions of conserved densities in homogeneous, stationary, max-
imal entropy state: these are the equations of state. The second term, D j

i (q̄·(x, t)),
encodes what is referred to as the constitutive relations, and its form is not a property
of the homogeneous, stationary, maximal entropy states; it must be calculated in a
di↵erent way.

2.2 Two-point function sum rules

A convenient way to code for hydrodynamic di↵usion is via the connected two-point
functions for all the local conserved densities1

Sij(x, t) := hqi(x, t)qj(0, 0)ic (2.9)

in a generic homogeneous stationary state. By the conservation law, and assuming
clustering property of correlation functions of local densities, the space integral of
Sij(x, t) is constant in time. It defines the matrix of static susceptibilities

Cij :=

ˆ
dx Sij(x, t) =

ˆ
dx Sij(x, 0) (2.10)

The tensor Cij is symmetric by translation invariance, and hence it defines a metric
on the space of conserved densities.

We introduce the variance 1
2

´
dx x2 (Sij(x, t)+Sij(x,�t)) to code for the spread-

ing of the correlations between the local densities. As a consequence of the conser-
vation laws and of space and time translation invariance, we have the following sum
rule [68] (see appendix A):

1

2

ˆ
dx x2

�
Sij(x, t) + Sij(x,�t) � 2Sij(x, 0)

�
=

ˆ t

0
ds

ˆ t

0
ds0

ˆ
dx hji(x, s)jj(0, s0)ic.

(2.11)
Note that by stationarity of the state, the current-current correlation function on the
right-hand side only depends on s � s0.

Under appropriate simple conditions that we are going to spell out below, the
spreading of these correlation functions is governed by separate ballistic and di↵usive
contributions:

1

2

ˆ
dx x2

�
Sij(x, t) + Sij(x,�t)

�
= Dijt

2 + Lijt + o(t) (2.12)

1
The upper index h· · · ic indicates that this is the connected correlation function: hABic = hABi�

hAihBi.
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Spreading coefficients: Drude weight & Onsager coefficients    

as t ! +1, for some finite coe�cients Dij and Lij , which are respectively related
to the ballistic and di↵usive expansions of the correlation functions. The coe�cients
Dij are the Drude weights, and the coe�cients Lij form what is called the Onsager
matrix.

Let us now explain (2.12). As it is clear from the sum rule (2.11), the large time
behaviour of the variance 1

2

´
dx x2

�
Sij(x, t)+Sij(x,�t)

�
is encoded in the large time

behaviour of the space-integrated current-current connected correlation functions. If
the latter is finite at large time, the former is going to grow quadratically in time.
More precisely, assume that the coe�cients Dij , defined as

Dij := lim
t!1

1

2t

ˆ t

�t
ds

ˆ
dx hji(x, s)jj(0, 0)ic, (2.13)

are finite. Then 1
2

´
dx x2

�
Sij(x, t) + Sij(x,�t)

�
= Dijt2 + O(t). The coe�cients

defined in (2.13) are exactly the Drude weights of the model [92–95].
The sub-leading behaviour of the variance 1

2

´
dx x2

�
Sij(x, t) + Sij(x,�t)

�
then

depends on the behaviour of the time integrated current-current correlator. Indeed,
as it follows from the sum rule (2.11), if the Onsager coe�cients Lij , defined by

Lij := lim
t!1

ˆ t

�t
ds

✓ˆ
dx hji(x, s)jj(0, 0)ic � Dij

◆
, (2.14)

are finite, then the expansion (2.12) holds. Although eq.(2.14) has a form slightly
di↵erent from Kubo’s formula, it can be exactly mapped to Kubo’s formula [96].

We also note that one can derive similar expressions for the Drude weight and the
Onsager matrix, but involving a mix of conserved densities and currents:

Dij = lim
t!1

1

2t

ˆ
dx x

�
hqi(x, t)jj(0, 0)ic � hqi(x,�t)jj(0, 0)ic

�
(2.15)

and

Lij = lim
t!1

ˆ
dx x

�
hqi(x, t)jj(0, 0)ic � hqi(x,�t)jj(0, 0)ic

�
� Dijt

�
. (2.16)

If the coe�cients Dij diverge (i.e. the limits do not exist), then the ballistic
description breaks down. If the coe�cients Lij diverge, the di↵usive expansion breaks
down and the model is expected to display super-di↵usion [97,98].

2.3 Hydrodynamics and two-point functions

The coe�cients Lij are related to the di↵usion matrix introduced in (2.7). This
can be seen by looking at the equation of motion for the two point function Sij(x, t).
Indeed, within the hydrodynamic approximation, the derivative expansion (2.7) of the
current hji(x, t)i implies that the two-point density correlation functions satisfy [63]
(see Appendix B)
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✓
A k
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2
D k

i @2
x

◆
Skj(x, t) = 0 for t > 0,

@tSij(x, t) +

✓
A k

j @x +
1

2
D k

j @2
x

◆
Sik(x, t) = 0 for t < 0,

(2.17)
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as t ! +1, for some finite coe�cients Dij and Lij , which are respectively related
to the ballistic and di↵usive expansions of the correlation functions. The coe�cients
Dij are the Drude weights, and the coe�cients Lij form what is called the Onsager
matrix.

Let us now explain (2.12). As it is clear from the sum rule (2.11), the large time
behaviour of the variance 1

2

´
dx x2

�
Sij(x, t)+Sij(x,�t)

�
is encoded in the large time

behaviour of the space-integrated current-current connected correlation functions. If
the latter is finite at large time, the former is going to grow quadratically in time.
More precisely, assume that the coe�cients Dij , defined as

Dij := lim
t!1

1

2t

ˆ t

�t
ds

ˆ
dx hji(x, s)jj(0, 0)ic, (2.13)

are finite. Then 1
2

´
dx x2

�
Sij(x, t) + Sij(x,�t)

�
= Dijt2 + O(t). The coe�cients

defined in (2.13) are exactly the Drude weights of the model [92–95].
The sub-leading behaviour of the variance 1

2

´
dx x2

�
Sij(x, t) + Sij(x,�t)

�
then

depends on the behaviour of the time integrated current-current correlator. Indeed,
as it follows from the sum rule (2.11), if the Onsager coe�cients Lij , defined by

Lij := lim
t!1

ˆ t

�t
ds

✓ˆ
dx hji(x, s)jj(0, 0)ic � Dij

◆
, (2.14)

are finite, then the expansion (2.12) holds. Although eq.(2.14) has a form slightly
di↵erent from Kubo’s formula, it can be exactly mapped to Kubo’s formula [96].

We also note that one can derive similar expressions for the Drude weight and the
Onsager matrix, but involving a mix of conserved densities and currents:

Dij = lim
t!1

1

2t

ˆ
dx x

�
hqi(x, t)jj(0, 0)ic � hqi(x,�t)jj(0, 0)ic

�
(2.15)

and

Lij = lim
t!1

ˆ
dx x

�
hqi(x, t)jj(0, 0)ic � hqi(x,�t)jj(0, 0)ic

�
� Dijt

�
. (2.16)

If the coe�cients Dij diverge (i.e. the limits do not exist), then the ballistic
description breaks down. If the coe�cients Lij diverge, the di↵usive expansion breaks
down and the model is expected to display super-di↵usion [97,98].

2.3 Hydrodynamics and two-point functions

The coe�cients Lij are related to the di↵usion matrix introduced in (2.7). This
can be seen by looking at the equation of motion for the two point function Sij(x, t).
Indeed, within the hydrodynamic approximation, the derivative expansion (2.7) of the
current hji(x, t)i implies that the two-point density correlation functions satisfy [63]
(see Appendix B)
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✓
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2
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x

◆
Skj(x, t) = 0 for t > 0,
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✓
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1
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◆
Sik(x, t) = 0 for t < 0,

(2.17)
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in a generic homogeneous stationary state. By the conservation law, and assuming clus-
tering property of correlation functions of local densities, the space integral of Si j(x , t) is
constant in time. It defines the matrix of static susceptibilities

Ci j :=
ˆ

dx Si j(x , t) =
ˆ

dx Si j(x , 0) . (2.12)

The tensor Ci j is symmetric by translation invariance, and hence it defines a metric on the
space of conserved densities.

We introduce the variance 1
2

´
dx x2 (Si j(x , t) + Si j(x ,�t)) to code for the spreading

of the correlations between the local densities. As a consequence of the conservation laws
and of space and time translation invariance, we have the following sum rule [69] (see
appendix A):

1
2

ˆ
dx x2
�
Si j(x , t) + Si j(x ,�t)� 2Si j(x , 0)

�
=
ˆ t

0
ds
ˆ t

0
ds0

ˆ
dx hji(x , s)j j(0, s0)ic .

(2.13)
Note that by stationarity of the state, the current-current correlation function on the right-
hand side only depends on s� s0.

Under appropriate simple conditions that we are going to spell out below, the spread-
ing of these correlation functions is governed by separate ballistic and diffusive contribu-
tions:

1
2

ˆ
dx x2
�
Si j(x , t) + Si j(x ,�t)

�
= Di j t

2 +Li j t + o(t) (2.14)

as t ! +1, for some finite coefficients Di j and Li j , which are respectively related to the
ballistic and diffusive expansions of the correlation functions. The coefficients Di j are the
Drude weights, and the coefficients Li j form what is called the Onsager matrix.

Let us now explain (2.14). As it is clear from the sum rule (2.13), the large time
behaviour of the variance 1

2

´
dx x2
�
Si j(x , t) + Si j(x ,�t)

�
is encoded in the large time

behaviour of the space-integrated current-current connected correlation functions. If the
latter is finite at large time, the former is going to grow quadratically in time. More
precisely, assume that the coefficients Di j , defined as

Di j := lim
t!1

1
2t

ˆ t

�t
ds

ˆ
dx hji(x , s)j j(0, 0)ic , (2.15)

are finite. Then 1
2

´
dx x2
�
Si j(x , t) + Si j(x ,�t)

�
= Di j t2 +O(t). The coefficients defined

in (2.15) are exactly the Drude weights of the model [93–96].
The sub-leading behaviour of the variance 1

2

´
dx x2
�
Si j(x , t) + Si j(x ,�t)

�
then de-

pends on the behaviour of the time integrated current-current correlator. Indeed, as it
follows from the sum rule (2.13), if the Onsager coefficients Li j , defined by

Li j := lim
t!1

ˆ t

�t
ds
Åˆ

dx hji(x , s)j j(0,0)ic � Di j

ã
, (2.16)

are finite, then the expansion (2.14) holds. Although eq.(2.16) has a form slightly dif-
ferent from Kubo–Mori inner product formula for diffusion constant, the latter reduces
(under certain mild assumptions [97]) to standards grand-canonical averaging and there-
fore to equation (2.16).
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Conservation law 
Space and time translation invariance
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bare charge ! interaction 

dressing 
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New result 
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Confirm the validity of the GHD! 



Bare charges !
particle number ,  magnetization number,      energy
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Beyond the bosonization result: finite magnetic field at T=0

Bosonization 
at É = 0

Drude weight
at É ≠ 0, k ≠ 0
for	Phase	IV

Susceptibility
at É ≠ 0

Crossing Luttinger parameters: F45 , F54  

spin rotation symmetry F5 = 1

General result:
arbitrary â, ä
For all phases

Contributions from another 
degrees of states
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New Result 
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Luttinger parameters v.s. Dressed charges
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Dressed charges at infinite interaction
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Linear Drude weight at finite temperature

• Universal laws in TLL
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• Phase diagram: characteristic of Luttinger liquid
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New Result



Universal scaling laws at quantum criticality
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Universal scaling for phase transition from II to IV

Universal scaling for phase transition from IV to V

Excellent agreement between numerical and analytical results!



Nonlinear Drude weight
• Universal laws at ground state
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The general features in linear and nonlinear Drude weight

linear three order nonlinear higher order nonlinear
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Quantum transport in 1D Hubbard model

dynamic process          equilibrium problem             

WB  : charge current

WH :  spin current

Wg  :  kinetic current
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Breakdown integrability

Nichols et. al., Science 363, 383 (2019)

At t=0, the bottom of the box trap is tilted, leading an 
accelerating  the current of atoms across the center. 

Measuring Drude weight in 1D Bose gas

Schuttelkopt et. al. arXiv:2406.17569



New frontiers in quantum integrability: Super diffusive spin transport 

z = −˜*
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# )Quantum gas 

Kardar-Parisi-Zhang hydrodynamics!

KPZ dynamics:   z=3/2 for ∆≈ s

˜ =
Nsb)

t
; 	 ∆≈ 1,	Ferromagnetic 

Such quantum control enabled us to pre-
pare spin domain walls (16, 17, 43, 44) by
spatially addressing half of the system. Sub-
sequently, we prepared high-entropy states
by globally rotating the spins away from the
Sz axis by using a resonant microwave pulse
and then locally dephasing them by project-
ing a site-to-site random spin-dependent po-
tential, which we modified from shot to shot
(41) (Fig. 1C). More precisely, our experiments
focused on tracking spin dynamics, starting
from a class of initial states containing a spin
domain wall with magnetization difference
2h in themiddle of the spin chain—i.e., half of
the system has magnetization h; the other
half has magnetization −h. In the infinite-
temperature limit, h → 0, the relaxation of
such states yields linear response transport
coefficients, as the derivative of the spin pro-
file is precisely the dynamical spin structure
factor (16, 17).
To probe 1D spin dynamics in our system, we

rapidly quenched the lattice depth along 1D
tubes with a length of 50 sites, which suddenly
increased the spin-exchange coupling from
zero to J=ℏ ¼ 64 1ð Þs$1 (where ℏ is Planck’s
constant divided by 2p). After tracking the
spin dynamics for up to ~45 spin-exchange
times t ¼ ℏ=J, we removed one spin compo-
nent and measured the remaining occupation
via fluorescence imaging (Fig. 1B).

Superdiffusive spin transport

To explore the nature of anomalous spin trans-
port in the 1D Heisenberg model, we initialize
the spins in a high-entropy domain-wall state
with h ¼ 0:22 2ð Þ. We characterize the subse-
quent spin transport by measuring the polar-
ization transfer, P(t), defined as the average
total number of spins that have crossed the
domain wall by time t (41). The emergence of

hydrodynamics is characterized by the power-
law scaling of P tð Þ ∼ t1=z and immediately en-
ables us to extract the underlying dynamical
exponent z. As depicted in Fig. 2A, the data
exhibit a superdiffusive exponent, z ¼ 1:54 7ð Þ,
consistent with KPZ scaling. By comparison,
neither a diffusive (z = 2) nor a ballistic (z = 1)
exponent accurately captures the observed dy-
namics (Fig. 2B) (41). Somewhat surprisingly,
we also observe a superdiffusive exponent of
z ¼ 1:45 5ð Þupon changing the initial state to a
near-pure domainwall withh ¼ 0:95 2ð Þ (fig. S8)
(26, 41, 44–46).
To further explore the superdiffusivedynamics,

we investigate the spatially resolved spin profiles

at h ¼ 0:22 2ð Þ. Our experimental observations
are in quantitative agreement with simu-
lations based on tensor-network numerical
techniques (41, 46, 47) and conform to KPZ
dynamics (Fig. 2A). Crucially, when appro-
priately rescaled by the dynamical exponent,
all of the observed spatiotemporal profiles
collapse onto a scaling form consistent with
the KPZ scaling function (Fig. 2C).

Microscopic origins of superdiffusion

To understand why the combination of inte-
grability and nonabelian symmetry leads to
emergent superdiffusive transport, it is instruc-
tive to first consider the transport dynamics on

Wei et al., Science 376, 716–720 (2022) 13 May 2022 2 of 5

Fig. 2. Superdiffusive spin transport in a high-temperature Heisenberg chain. (A) The polarization
transfer for a domain-wall initial state with a contrast of h ¼ 0:22 2ð Þ grows as a power law [P tð Þº t1=z]
with a fitted exponent z ¼ 1:54 7ð Þ (solid line), indicating superdiffusive transport. The experimental
data are consistent with numerical Heisenberg-model simulations (41) (dashed line). The insets show the
averaged spin profiles 2Szj tð Þ at times t/t = 0, 10, 26, which are compared to simulations (dashed lines).
(B) Polarization transfer in a double-logarithmic plot. The solid lines are power-law fits with fixed exponents,
where a distinction between z = 3/2 (green) and both z = 2 (brown) and z = 1 (blue) is visible. (C) When
rescaling time by the inverse dynamical exponent, the spatial spin profiles at times t/t = 5 to 35 (light to dark
green) collapse to a characteristic shape consistent with the integrated KPZ function. Error bars denote SEM.

Fig. 1. Hydrodynamic transport
in Heisenberg chains and
schematic of the experimental
system. (A) Dynamical exponents
for finite-temperature Heisenberg
chains. Whereas integrable
systems typically display ballistic
transport (magnetized chains,
d > 0), nonintegrable systems
are generically diffusive (2D
Heisenberg model, J⊥ > 0). For
unmagnetized Heisenberg chains,
transport is expected to fall
into the KPZ universality class
with a superdiffusive exponent
z = 3/2. (Inset) By measuring polarization transfer P(t) across a domain
wall, we directly observe these transport regimes: superdiffusion in the
unmagnetized case (green), ballistic transport at finite net magnetization
(blue), and diffusion in two dimensions (orange). Exponents are extracted by
fitting P tð Þº t1=z; for the ballistic case, we additionally fit a vertical intercept
to account for transient initial-time dynamics. Error bars denote SD of the fit.
(B) In each experimental run, we measure the spin states of a Heisenberg

chain (top) by removing one spin species (center) and imaging the atomic
site occupation (bottom). (C) The Heisenberg chains are achieved in a
2D atomic Mott insulator (analysis region depicted) with controllable
interchain coupling. Our setup allows us to prepare domain walls with
high-purity h (left and middle columns) and low-purity h (right). We
measure the time evolution of both ↑j i (top) and ↓j i (middle and bottom
rows) atoms to extract the polarization transfer.
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Polarization: measuring polarization transfer

Super diffusive transport  in Heisenberg chain at high T 

A: The polarization transfer for a domain wall initial state 
with a magnetization q = n. ff.	
The	insets	show	spin	pro˝iles 2'#   	at t=0, 10, 26 J/h.
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Superdiffusive in charge  

z = 0, # = 0,	^I= 1

Both spin and charge have a SU(2) symmetry

Spin and charge Drude weight vanish

Spin and charge superdiffusive transport 

CĂTĂLIN PAŞCU MOCA et al. PHYSICAL REVIEW B 108, 235139 (2023)
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FIG. 5. Rescaled profiles of (a) the average occupation δn(x, t ),
and (b) the current j(x, t ), at half filling for U = 1.0 at various times.
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∂xn(x, t ) = −bµ

tα
f (b x/tα ), (21)

with the scaling function f (y) = −ρ ′(y). Notice that f (y)
obeys the sum rule,

∫
dy f (y) = 1.
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FIG. 6. The time dependence of the current across the interface
follows a power-law decay, ∼t1−α , with a superdiffusion exponent,
αsd ≈ 2/3. The transferred charge scales as Ntr(t ) ∼ tα = t2/3, as
shown in the inset. System size is L = 300 sites.

FIG. 7. (a) The density gradient δxn(x, t ) = δn(x, t ) − δn(x −
1, t ), as well as (b) the current density j(x, t ), display universal KPZ
scaling. Here, fKPZ is the KPZ scaling function [20], while hKPZ has
been computed by integrating Eq. (23). Notice that a single scaling
parameter b = 0.98 is used to fit all profiles simultaneously on both
panels. Bond dimension was fixed to M = 100.

The scaling form of the current follows from the continuity
equation, ṅ(x, t ) + ∂x j(x, t ) = 0, implying

j(x, t ) = µ

b
α tα−1 h(b x/tα ), (22)

with the scaling function h(y) related to f (y) by the differen-
tial equation,

h′(y) = −y f (y). (23)

As shown in Fig. 7, j(x, t ) and ∂xn(x, t ) indeed satisfy the
scaling forms, given by Eqs. (22) and (21), respectively. We
emphasize that these scaling forms are just simple conse-
quences of the rather natural scaling ansatz, given by Eq. (20),
and the conservation of electron charge.

We remark that in the case of a Gaussian current profile,
h(y) ∼ e−κ y2/2, with h(y) and f (y) assumed to be the same,
a Gaussian forms (apart from a prefactor). However, this rela-
tion is violated for any other profile, including the KPZ profile
discussed here.

To conclusively establish the system’s universal dynam-
ics, we now compare the scaling functions f (y) and h(y) to
the KPZ scaling function. For small µ, one can use liner
response theory to prove that the equilibrium correlation
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FIG. 1. Heat map of occupation density and charge current in
the noninteracting case U = 0. (a) Time evolution of the average
occupation along the chain with respect to half filling δn(x, t ) =
〈n(x, t )〉 − 〈n〉, with 〈n〉 = 1. (b) Average current along the chain,
demonstrating a regular light cone propagating ballistically with a
constant Lieb-Robinson velocity of vF ≈ J . The red dashed lines
provide a visual guide, corresponding to t = x/vF . The system size
is fixed at L = 200 sites.

velocity [60,61]. In the absence of interactions, the quasi-
particle motion is coherent and transport is referred to as
“ballistic”, implying a linear relation between distance and
traveling time. While in this section we present results specific
to charge transport at half filling, it is important to remark that
for U = 0, ballistic transport persists for any filling, both in
the charge and in the spin sector.

In Fig. 1, we display the evolution of the average occupa-
tion δn(x, t ) = 〈n(x)〉(t ) − 〈n〉 and the particle current,

j(x, t ) = tr
{

i
2

[c†
x+1,σ cxσ − c†

xσ cx+1σ ]ρ(t )
}
, (15)

along the chain after the initial quench. These both display
light-cone propagation of quasiparticles with a constant ve-
locity, vmax. To confirm ballistic transport, we performed
quantitative analysis of the charge and current equilibration,
and the scaling of charge and current profiles. Figure 2 demon-
strates ballistic scaling for U = 0: the rescaled profiles for
δn(x, t ) and j(x, t ) collapse onto a single universal curve
when plotted against x/t . The total number of particles trans-
ferred across the interface is another useful quantity, whose
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FIG. 2. (a) Rescaled profiles for the average occupation δn(x, t )
at U = 0 and half filling at various times, plotted as a function of
x/t to display the universal ballistic scaling. (b) The corresponding
current profile j(x, t ) exhibits a similar ballistic scaling.

asymptotic behavior in the long-time limit allows one to
identify the type of dynamics [9,19]. The total charge across
the interface scales as

Ntr (t ) =
∫ t

0
j(0, t ′)dt ′ ∝ tα, (16)

with an exponent α = 1/z. For ballistic transport, one has
α = 1, while diffusive transport is characterized by α = 1/2,
and anomalous diffusion by an exponent different from these.
As Fig. 3 shows, j(0, t ) exhibits a rich structure. Following
the quench, the current displays transient oscillations with an
approximate frequency ω ≈ ωJ ≡ J and an amplitude decay-
ing as ∝ t−1. In the long-time limit, the current approaches a
finite asymptotic value. The inset displays the total number of
particles transferred across the interface, increasing linearly
with time, Ntr (t ) ∝ t , corresponding to ballistic transport.

Our TEBD results are consistent with the analytical find-
ings. By assuming periodic boundary conditions (PBCs) and
performing a Fourier transform of the time evolution, it is
possible to express the time dependence of the annihilation
(creation) operators in the Heisenberg picture in terms of
Bessel functions of the first kind,

cx̃σ (t ) =
∑

x

ix−x̃Jx−1(ωJ t )cx̃,σ , (17)
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FIG. 7. (a) The density gradient δxn(x, t ) = δn(x, t ) − δn(x −
1, t ), as well as (b) the current density j(x, t ), display universal KPZ
scaling. Here, fKPZ is the KPZ scaling function [20], while hKPZ has
been computed by integrating Eq. (23). Notice that a single scaling
parameter b = 0.98 is used to fit all profiles simultaneously on both
panels. Bond dimension was fixed to M = 100.

The scaling form of the current follows from the continuity
equation, ṅ(x, t ) + ∂x j(x, t ) = 0, implying

j(x, t ) = µ

b
α tα−1 h(b x/tα ), (22)

with the scaling function h(y) related to f (y) by the differen-
tial equation,

h′(y) = −y f (y). (23)

As shown in Fig. 7, j(x, t ) and ∂xn(x, t ) indeed satisfy the
scaling forms, given by Eqs. (22) and (21), respectively. We
emphasize that these scaling forms are just simple conse-
quences of the rather natural scaling ansatz, given by Eq. (20),
and the conservation of electron charge.

We remark that in the case of a Gaussian current profile,
h(y) ∼ e−κ y2/2, with h(y) and f (y) assumed to be the same,
a Gaussian forms (apart from a prefactor). However, this rela-
tion is violated for any other profile, including the KPZ profile
discussed here.

To conclusively establish the system’s universal dynam-
ics, we now compare the scaling functions f (y) and h(y) to
the KPZ scaling function. For small µ, one can use liner
response theory to prove that the equilibrium correlation
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FIG. 7. (a) The density gradient δxn(x, t ) = δn(x, t ) − δn(x −
1, t ), as well as (b) the current density j(x, t ), display universal KPZ
scaling. Here, fKPZ is the KPZ scaling function [20], while hKPZ has
been computed by integrating Eq. (23). Notice that a single scaling
parameter b = 0.98 is used to fit all profiles simultaneously on both
panels. Bond dimension was fixed to M = 100.
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with the scaling function h(y) related to f (y) by the differen-
tial equation,

h′(y) = −y f (y). (23)

As shown in Fig. 7, j(x, t ) and ∂xn(x, t ) indeed satisfy the
scaling forms, given by Eqs. (22) and (21), respectively. We
emphasize that these scaling forms are just simple conse-
quences of the rather natural scaling ansatz, given by Eq. (20),
and the conservation of electron charge.

We remark that in the case of a Gaussian current profile,
h(y) ∼ e−κ y2/2, with h(y) and f (y) assumed to be the same,
a Gaussian forms (apart from a prefactor). However, this rela-
tion is violated for any other profile, including the KPZ profile
discussed here.

To conclusively establish the system’s universal dynam-
ics, we now compare the scaling functions f (y) and h(y) to
the KPZ scaling function. For small µ, one can use liner
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h′(y) = −y f (y). (23)

As shown in Fig. 7, j(x, t ) and ∂xn(x, t ) indeed satisfy the
scaling forms, given by Eqs. (22) and (21), respectively. We
emphasize that these scaling forms are just simple conse-
quences of the rather natural scaling ansatz, given by Eq. (20),
and the conservation of electron charge.

We remark that in the case of a Gaussian current profile,
h(y) ∼ e−κ y2/2, with h(y) and f (y) assumed to be the same,
a Gaussian forms (apart from a prefactor). However, this rela-
tion is violated for any other profile, including the KPZ profile
discussed here.
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ics, we now compare the scaling functions f (y) and h(y) to
the KPZ scaling function. For small µ, one can use liner
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TABLE I. TBA Spectrum for the Hubbard model. As is customary, we employ units in which the hopping strength, t = 1. Here, ẽa(u) is
the dressed energy without the contribution from the chemical potential and magnetization terms in the Hamiltonian (i.e., for H̃ = T̂ + V̂ ).
The full dressed energy for H is ea(u) = ẽa(u) − µqa − hma.

Species a ua domain σa qa ma k′(u) ẽa(u)

y (±-branch) [−1, 1] ∓1 1 1
2 ∓ 1√

1−u2
±2

√
1 − u2 − U

2

M|uw R −1 2M 0 − 1√
1−(u+MiU/4)2

− 1√
1−(u−MiU/4)2

2
∑

α=±1

√
1 − (u + αMiU/4)2 − MU

M|w R +1 0 −M 0 0

the bare (group) velocity at those points, we find

DO = vF

π
O2

F , (14)

where OF is the operator evaluated at the Fermi points.
Expanding the TBA equations in regime (iv), we note that

charge and energy transport do not change to leading order
in t/U during the crossover from the spin-incoherent regime
(iii) to the spin-coherent regime (iv). This was postulated in
the context of Luttinger liquid theory Ref. [94] and was used
to infer an effective theory of transport in the SILL. Using
GHD, we have now verified that this statement is correct up to
t/U corrections (see Appendix D). Going beyond the leading
terms, we also compute the exact charge and energy Drude
weights by numerically solving the GHD equations; these are
reported in Fig. 4, which clearly shows that these sublead-
ing corrections are sensitive to the crossover. An analytical
estimate of the corrections in regime (iii) can be found in
Appendix D.

FIG. 4. The crossover between the spin-incoherent regime (iii)
and spin-coherent regime (iv) is also visible in subleading corrections
to the charge and energy Dude weights. The plots show the magni-
tude of the relative correction to the Drude weight compared to the
leading order expressions in t/U (D∞

q and D∞
ẽ ) given by Eq. (11).

Apart from a tail at large T , which is due to the crossover to regime
(ii), we see that the corrections indeed scale like t/U and depend on
the ratio T/J , signaling that their change is really a consequence of
the (iii)-(iv) crossover. Numerical parameters: h = 0 and 〈n〉 = 0.3.

V. TRANSPORT AT h = 0 OR µ = 0: KPZ UNIVERSALITY
AND SUPERDIFFUSION

We now turn to a generic feature of transport expected for
all t/U , along special high-symmetry lines of the model. As
noted above, the Hubbard model hosts an SU(2)s symmetry
whenever h = 0 and an SU(2)η symmetry when µ = 0. Along
these high-symmetry lines, reasoning in analogy with the
case of the isotropic Heisenberg (XXX) spin chain [71,80–
82,84–86], we expect spin and/or charge transport respec-
tively to be transported super-diffusively with length-time
scaling governed by the Kardar-Parisi-Zhang (KPZ) dynam-
ical universality class [99], meaning that

〈Sµ(x, t )Sµ(0, 0)〉 = χh
[
λ(S)

KPZt
]2/3 fKPZ

(
x

[
λ(S)

KPZt
]2/3

)

, (15)

〈n(x, t )n(0, 0)〉 = χµ
[
λ

(η)
KPZt

]2/3 fKPZ

(
x

[
λ

(η)
KPZt

]2/3

)

, (16)

where χh and χµ are respectively the spin and charge suscep-
tibilities, fKPZ is a universal scaling function, and λ(S)

KPZ, λ
(η)
KPZ

are characteristic energy scales for the KPZ dynamics. The
possibility of superdiffusion in the Hubbard model was first
identified in Ref. [81], that used bounding arguments to show
that the diffusion constant diverged in the h → 0 limit. How-
ever, a detailed analysis of superdiffusive transport has not
been previously attempted; also, the SO(4) invariant point
h = µ = 0 has not been directly studied. Therefore here we
address these lacunae by providing arguments for KPZ scaling
both along the high-symmetry lines and at the SO(4) point,
deploying both kinetic-theory approaches, [71] and a classical
analysis of soft gauge modes [82,85], before confirming our
predictions using state-of-the-art numerical simulations using
time-evolving matrix product operators (MPOs).

A. Kinetic theory of superdiffusion

We begin our discussion of superdiffusion of charge and
spin by incorporating diffusive corrections to the linearized
GHD framework to demonstrate the divergence of the relevant
diffusion constant, focusing for definiteness on spin transport
at h = 0. Following Refs. [71,86], we estimate the effective
spin diffusion constant at time t as DS (t ) =

∑
a Da(t ) where

Da(t ) = t
4χh

∫
du ρa(u)[1 − na(u)]

[
veff

a (u)
]2

×
∑

j,k

1
j!k!

∂
j
µ̃∂k

h̃ [mdr(µ̃, h̃)]2〈µ̃ j h̃k〉t , (17)
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Conclusion and discussion 
1. The 1D repulsive Hubbard model exhibits novel phases of Luttinger liquids and phase 

transitions driven by either external potentials or interaction. 

2. The spin and charge Drude weights at low temperature have been analytically 
obtained, showing universal ballistic transport with spin polarization.

3. We have built up  exact relations between Luttinger parameters and dressed charges.

4. The universal scaling laws of the Drude weight at quantum criticality obtained shed 
light on non-Fermi liquid behaviour.

Thanks for your listening!

The decade-old 1D Hubbard model continues to yield new and exciting physics!


