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Breaking integrability



Quantum quench: 

a paradigmatic non-equilibrium protocol

Initial state: ground state of some local Hamiltonian

Quantum quench: a sudden change in the Hamiltonian

:

Global quantum quench: 

both     and     are translationally invariant
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Relaxation and thermalization
Classical closed many-body systems approach equlibrium

(Boltzmann’s H-theorem)

T. Kinoshita et al., 

Nature 440, 900 (2006)

Quantum Newton’s 

cradle experiment
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How does relaxation happen?

P. Calabrese and J. Cardy, 2005
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Transverse field Ising model

Model exactly solvable in 

terms of free fermions
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Quantum quench in TFIM

Model exactly solvable in 

terms of free fermions

: ordered (FM) phase : disordered (PM) phase

P. Calabrese and J. Cardy, 2005
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Entanglement entropy

between left and right halves

iTEBD simulation by M. Collura (SISSA)
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Non-integrable Ising chain in FM phase ℎ𝑧 < 1

: light-cone gets suppressed!

ۧȁ𝛹(0) = ⋯ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ⋯ ℎ𝑥 > 0



Confinement in the Ising model

• For free fermions with dispersion 

• For              (FM phase), the massive fermions correspond to domain 

walls separating domains of magnetisation 

•       induces an attractive interaction between DWs that for small 

enough can be approximated with a linear potential 

• DWs do not propagate freely but get confined into mesons 

Free DW Bound state = meson

McCoy & Wu ’78
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ℎ𝑥



Quark confinement in strong interactions

In contrast to electricity, 

chromoelectric field lines 

attract each other: strings

Flux density (= field strength) constant for large separation: 

Ising model: two colours                only mesons

QCD: three colours                          also baryons

Rutkevich 2014; Lencsés & Takács 201512



Effect of confinement on time evolution

What happens if the post-quench Hamiltonian is confining?

when moving away, the particles feel the attractive interaction

the interaction eventually turns the particles back

acts as a source of quasi-particles at 

pairs of particles move in opposite directions with velocity
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M. Kormos, M. Collura, G. Takács, and P. Calabrese, 

Nature Physics 13, 246–249 (2017)



The meson spectrum

Rutkevich, 2008

Consider two fermions in 1D with Hamiltonian
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Schrödinger equation → mesons labelled by species number

Krasznai & Takács, 2024

𝜒 = 2𝐽ℎ𝑙 1 − ℎ𝑡
2 1/8



Quench spectroscopy from time evolution of 

magnetisation
Quenches from FM to FM: no relaxation observed! 

hz=0.5, hx =0, hz =0.25, hx =0.1 hz =0.5, hx =0, hz =0.25, hx =0.2 hz =0.25, hx =0, hz =0.25, hx =0.1

iTEBD vs. ED with L=8,10,12

0 0 0 0 0 0 

Power spectrum of compared to semiclassical meson spectra

m2-m1 =0.46, m1 =3.7, 

m2 =4.1, m3 =4.5 

m2-m1 =0.68, m1 =4.0, 

m2 =4.7 

m2-m1 =0.46, m1 =3.7, 

m2 =4.1, m3 =4.5 
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It is the mesons that are the source of the persistent oscillations!



Another effect of mesons: escaping correlations
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Decay of the false vacuum

So far: confining quench –

𝒉𝒙 parallel to initial magnetisation

Other option: anti-confining quench ℎ𝑥

ℎ𝑧

true vacuumfalse vacuum

x x

Attractive force Repulsive force

Expectation: nucleated bubbles of the true vacuum expand

Decay of the false vacuum (QFT: Coleman scenario)
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Digression: vacuum decay in QFT

true vacuumfalse vacuum

𝜀 latent heat barrier:

surface tension 𝛼

R

Critical bubble:  

𝑅 < 𝑅∗ : bubble collapses

𝑅 > 𝑅∗: bubble expands

Nucleation rate: given by instanton

𝜀𝑉 = 𝛼𝐴 → 𝑅∗
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Localisation in anti-confining quenches

x x

ℎ𝑥ℎ𝑧 ℎ𝑧 ℎ𝑥

𝜎1
𝑥𝜎𝑙+1

𝑥
𝑐

t t

Bubbles do not expand!

O. Pomponio, M. A. Werner, G. Zaránd and G. Takács,

SciPost Phys. 12, 061 (2022)
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Bloch oscillations
 

                                   

𝑉 𝑥 = −𝜒 𝑥 →
𝑑𝑘

𝑑𝑡
= 𝜒

𝜔𝐵𝑙𝑜𝑐ℎ =
2𝜋

𝜒
 

 

    

   

     

    

𝑥

𝑣 𝑘 =
𝜕𝜖 𝑘

𝜕𝑘
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The bubble spectrum
Wannier-Stark localization/Bloch oscillation  → localized bubble states 

21

Krasznai & Takács, 2024



Local quenches
Start system in domain wall initial state ℎ𝑥

ℎ𝑥

true vacuumfalse vacuum

semiclassical 

kink trajectories

Right half: confinement

Left half:    Bloch oscillations

(Wannier-Stark localization)

P.P. Mazza, G. Perfetto, A. Lerose, M. Collura, and A. Gambassi, 2019

Simulation:

A. Krasznai and G. Takács, 2024

No surprise here…
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Escaping fronts

Start system in spin-flip initial state

A. Krasznai and G. Takács, 2024

ℎ𝑥

?
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Schrödinger kittens escape confinement

Combining analytic and numerical methods:

Escaping fronts are superpositions of left/right moving single mesons

A. Krasznai and G. Takács, 2024

Maximum 

meson velocity

Maximum 

kink velocity
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Overlaps of mesons with initial state

The overlaps Cn(K) can be computed using Jordan-Wigner transformation 

+ meson wave function from Schrödinger equation

A. Krasznai and G. Takács, 2024
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Schrödinger kittens escape confinement
Global quench: 

translational invariance only allows to create moving mesons 

in opposite momentum pairs 

- energy threshold! 

-> Escaping fronts are strongly suppressed by small 

probability of tunneling (string breaking/Schwinger effect)

Spin-flip quench: 

Single mesons can be created

No suppression: locally available energy from spin-flip

Domain wall quench:

not enough energy to 

create a meson
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Local quenches induced by spin-flip over 

the false vacuum

Global quenches: fronts suppressed by 

Wannier-Stark localization (Bloch oscillations)

Escaping fronts in local quenches: superpositions of left/right moving 

single, nucleated true vacuum bubbles

A. Krasznai and G. Takács, 2024Maximum 

bubble velocity

Maximum 

kink velocity

ℎ𝑥
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Summary

• Thermalisation of quantum systems is nontrivial

• Quantum quench is a paradigmatic, experimentally feasible 

protocol to study non-equilibrium dynamics

• Confinement strongly alters dynamics, suppressing light cone

• False vacuum decay can be suppressed by Bloch oscillations

• Wannier-Stark localization provides another mechanism to 

suppress light cone 

• But: in local quenches, Schrödinger kittens can escape 

confinement / Wannier-Stark localisation
28



Outlook

1. Confinement alters dynamics in many other systems

(including 1+1D QCD, 2d transverse Ising model etc.)

2. Experimental realizations

Confinement:    Rydberg atoms

Quantum simulations

Vacuum decay: fermionic superfluids

3. Connection to high energy physics

Meta-stability of vacuum can be detected by local quenches by 

difference between meson and bubble spectra!

F. Wilczek et al., 2023
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The end
30
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