DÝN&MICS OF CONFINING SPIN CH&INS

Gábor Takács BME Department of Theoretical Physics

Workshop on Mathematics and Physics of Integrability

Mathematical Research Institute (MATRIX), Creswick, Australia 1-19 July 2024

PROJECT

NATIONAL RESEARCH, DEVELOPMENT AND INNOVATION OFFICE

HUNGARY

FINANCED FROM THE NRDI FUND

MOMENTUM OF INNOVATION

Collaborators

Pasquale Calabrese

Mario Collura

Octavio Pomponio

Márton Kormos

Anna Krasznai

Gergely Zaránd

Miklós Werner

Outline

- **1. Introduction: quantum quenches and thermalization**
- 2. Light-cone spreading of correlation and entanglement
- 3. Confinement and suppression of light-cone dynamics
- 4. Decay of the false vacuum and Bloch oscillations
- 5. Local quenches and escaping fronts
- 6. Summary and outlook

Breaking integrability

Quantum quench: a paradigmatic non-equilibrium protocol

Initial state: ground state of some local Hamiltonian

 $H_0|\Psi(0)\rangle = \mathcal{E}_0|\Psi(0)\rangle$

Quantum quench: a sudden change in the Hamiltonian

$$H_0 \xrightarrow[t=0]{} H : |\Psi(t)\rangle = e^{-iHt} |\Psi(0)\rangle$$

Global quantum quench: both H_0 **and** H **are translationally invariant**

 $\langle \Psi(0)|H|\Psi(0)\rangle \propto \operatorname{vol}(S)$

Initial state is "thermodynamical" with finite energy density

Relaxation and thermalization

Classical closed many-body systems approach equilibrium (Boltzmann's H-theorem)

Closed quantum many-body systems:

- do they approach any sort of steady state and under what conditions?
- what is the nature of the steady state? Is it thermal?
- how does the relaxation to the steady state proceed?

Quantum Newton's cradle experiment

T. Kinoshita et al., Nature 440, 900 (2006)

- After quench, initial state has extensive energy
- It acts as a source of quasi-particles which propagate with momentum-dependent velocities

$$v_p = \frac{dE_p}{dp}$$

- Particles emitted from regions of the initial correlation length are correlated and entangled, while the ones emitted far from each other are incoherent
- In many systems, the velocity distribution has a maximum

$$ert v_p ert < v_{max}$$
Lieb-Robinson bounds)

which leads to a light-cone like spreading of correlation and entanglement.

P. Calabrese and J. Cardy, 2005

Transverse field Ising model

 $H_{TFIM} = -J\sum_{i=1}^{L} \left(\sigma_i^x \sigma_{i+1}^x + h_z \sigma_i^z\right)$

Model exactly solvable in terms of free fermions

$$\epsilon(k) = 2J\sqrt{1 + h_z^2 - 2h_z}\cos(k)$$

Quantum quench in TFIM

 $H_{TFIM} = -J\sum_{i=1}^{L} \left(\sigma_i^x \sigma_{i+1}^x + h_z \sigma_i^z\right)$

Model exactly solvable in terms of free fermions

 $h_z < 1$: ordered (FM) phase $\langle \sigma^x_i \rangle = (1 - h_z^2)^{1/8} \neq 0$

Entanglement entropy between interval and rest of the system

 $h_z > 1$: disordered (PM) phase

P. Calabrese and J. Cardy, 2005

9

Non-integrable Is

Entanglement entropy between left and right halves

iTEBD simulation by M. Collura (SISSA)

Sing chain in FM phase
$$h_z < 1$$

 $H = -J \sum_{i=1}^{L} \left(\sigma_i^x \sigma_{i+1}^x + h_z \sigma_i^z + h_x \sigma_i^x \right)$
 $|\Psi(0)\rangle = \cdots \uparrow \uparrow \uparrow \uparrow \uparrow \uparrow \cdots \quad h_x > 0$
 $\langle \sigma_1^x \sigma_{m+1}^x \rangle_c$: light-cone gets suppressed!

Confinement in the Ising model

$$H = -J\sum_{j=1}^{L} \left[\sigma_j^x \sigma_{j+1}^x + h_z \sigma_j^z + h_x \sigma_j^x\right]$$

McCoy & Wu '78

• For $h_x = 0$ free fermions with dispersion $\epsilon(k) = 2J\sqrt{1 + h_z^2 - 2h_z \cos(k)}$

+ For $h_z < 1$ (FM phase), the massive fermions correspond to domain walls separating domains of magnetisation $\sigma = \pm (1 - h_z^2)^{1/8}$

• h_x induces an attractive interaction between DWs that for small enough h_x can be approximated with a linear potential

$$V(x) = 2Jh_x\sigma|x|$$

DWs do not propagate freely but get confined into mesons

Quark confinement in strong interactions

In contrast to electricity, chromoelectric field lines attract each other: strings

Flux density (= field strength) constant for large separation: $V(x) \propto |x|$

Colour (quark) confinement: only colour singlet ("white") states propagate freely

these are called hadrons

Ising model: two colours QCD: three colours only mesons also baryons

Condensed matter theory analogue with baryons: 3-state Potts

12

Effect of confinement on time evolution

What happens if the post-quench Hamiltonian is confining?

- $|\Psi(0)
 angle$ acts as a source of quasi-particles at t=0
- Pairs of particles move in opposite directions with velocity v_p
- when moving away, the particles feel the attractive interaction
- the interaction eventually turns the particles back

M. Kormos, M. Collura, G. Takács, and P. Calabrese, Nature Physics 13, 246–249 (2017)

But: how can we make sure that this is not merely a just-so story?

We need real signatures linking the dynamics quantitatively to confinement!

13

The meson spectrum

Consider two fermions in 1D with Hamiltonian

$$H = \epsilon(k_1) + \epsilon(k_2) + \chi |x_2 - x_1| = \omega(k; K) + \chi |x| \quad \text{Rutkevich, 2008}$$

$$k_{1,2} = K/2 \pm k \qquad \chi = 2Jh_l(1 - h_l^2)^{1/8}$$
Schrödinger equation \rightarrow mesons labelled by species number
$$H\psi_{n,K}(x) = \sum_{x'} H(x, x'; K)\psi_{n,K}(x') = E_n(K)\psi_{n,K}(x) \quad \text{Krasznai \& Takács, 2024}$$

$$\int_{k=0.25, h_l=0.1}^{h_l=0.1} \bigoplus_{x \neq X, X \neq$$

-π

- / . .

π

Quenches from FM to FM: no relaxation observed!

Power spectrum of $\langle \sigma_x \rangle$ compared to semiclassical meson spectra

Another effect of mesons: escaping correlations

 $\langle \sigma_1^x \sigma_{m+1}^x \rangle_c$

Decay of the false vacuum

$$H = -J\sum_{j=1}^{L} \left[\sigma_j^x \sigma_{j+1}^x + h_z \sigma_j^z + h_x \sigma_j^x\right]$$

So far: confining quench – h_x parallel to initial magnetisation

Other option: anti-confining quench

Attractive force

Repulsive force

Expectation: nucleated bubbles of the true vacuum expand

Decay of the false vacuum (QFT: Coleman scenario)

Digression: vacuum decay in QFT

Critical bubble: $\varepsilon V = \alpha A \rightarrow R_*$

- $R < R_*$: bubble collapses
- $R > R_*$: bubble expands

Nucleation rate: given by instanton

Localisation in anti-confining quenches

 $\langle \sigma_1^x \sigma_{l+1}^x \rangle_c$

The bubble spectrum

Wannier-Stark localization/Bloch oscillation \rightarrow localized bubble states

Local quenches

Escaping fronts h_x Start system in spin-flip initial state L $H = -J\sum \left(\sigma_i^x \sigma_{i+1}^x + h_z \sigma_i^z + h_x \sigma_i^x\right)$ i=1 $h_l = 0.2$ $h_l = 0.1$ $h_l = 0.3$ $h_l = 0.4$ -1.00100- 0.75 - 0.50 80 - 0.25 60 - 0.00 $\hat{\tau}$ -0.2540 -0.5020- -0.75 -1.000 2040 60 2040 60 40 2040 2060 60 spins

A. Krasznai and G. Takács, 2024

Schrödinger kittens escape confinement

Combining analytic and numerical methods:

Escaping fronts are superpositions of left/right moving single mesons

A. Krasznai and G. Takács, 2024

Overlaps of mesons with initial state

$$|\Psi(0)\rangle = \frac{1}{\sqrt{L}} \sum_{n,K} C_n(K) |M_n(K)\rangle$$

The overlaps $C_n(K)$ can be computed using Jordan-Wigner transformation + meson wave function from Schrödinger equation

A. Krasznai and G. Takács, 2024

Schrödinger kittens escape confinement

Global quench:

translational invariance only allows to create moving mesons in opposite momentum pairs - energy threshold!

-> Escaping fronts are strongly suppressed by small probability of tunneling (string breaking/Schwinger effect) Spin-flip quench:

Single mesons can be created

No suppression: locally available energy from spin-flip

Domain wall quench: not enough energy to create a meson

Local quenches induced by spin-flip over the false vacuum

Global quenches: fronts suppressed by Wannier-Stark localization (Bloch oscillations)

Escaping fronts in local quenches: superpositions of left/right moving single, nucleated true vacuum bubbles

 h_x

- Thermalisation of quantum systems is nontrivial
- Quantum quench is a paradigmatic, experimentally feasible protocol to study non-equilibrium dynamics
- Confinement strongly alters dynamics, suppressing light cone
- False vacuum decay can be suppressed by Bloch oscillations
- Wannier-Stark localization provides another mechanism to suppress light cone
- But: in local quenches, Schrödinger kittens can escape confinement / Wannier-Stark localisation

Outlook

- 1. Confinement alters dynamics in many other systems (including 1+1D QCD, 2d transverse Ising model etc.)
- 2. Experimental realizations

Confinement: Rydberg atoms Quantum simulations

Vacuum decay: fermionic superfluids

3. Connection to high energy physics

Meta-stability of vacuum can be detected by local quenches by difference between meson and bubble spectra!

F. Wilczek et al., 2023

The end