Set-theoretic YBE: quantum algebras \& universal \mathcal{R}-matrices

Anastasia Doikou

Heriot-Watt University
Creswick, July 2024
(1) AD, arXiv:2405.04088.
(2) AD, B. Rybolowicz, P. Stefanelli, arXiv:2401.12704.

Review

- [Drinfeld] introduced the "Set-theoretic YBE".
- [Hietiranta] first to find examples of such solutions. [Etingof, Shedler \& Soloviev] set-theoretic solutions \& quantum groups for param. free R-matrices.
- Connections to: geometric crystals [Berenstein \& Kazhdan, Etingof] and cellular automatons [Hatayama, Kuniba \& Takagi]. Etingof rational solutions from geometric crystal theory.
- Classical discrete integrable systems (YB maps), quad-graph, discrete maps, solitons interactions: [Veselov, Bobenko, Suris, Papageorgiou, Tongas,...] Parametric!
- Set-theoretic involutive solutions of YBE from braces:
[Rump, Guarnieri, Vendramin, Gateva-Ivanova, Cedó, Jespers, Okniński, Smoktunowicz,...]
- Connections to: braid theory, Hopf algebras, knot theory, low dimensional topology, Hopf-Galois extensions, ternary structures, such as heaps \& trusses ...

Motivation

- Non-parametric case: algebraic approach.
- Parametric case: discrete integrable systems and re-factorization problem (Bäcklund transform or discrete zero curvature condition), synonymous to Bianchi permutability: multi-solitons (soliton lattice). Also, Cube or 3D consistency condition 3D integrable discrete systems (time evolution).

Bianchi Permutability

3D Consistency Condition: YB Maps

Talk outline

- I will discuss the algebraic approach for the parametric case [AD]. Basic blueprint for the non-parametric case by [AD, Rybolowicz, Stefanelli].
- Introduce some preliminaries and motivations. Introduce the set-theoretic YBE and the notions of shelves, racks and quandles.
- Introduce the notions of parametric set-theoretic YBE and p-shelve and racks: parametric self-distributivity lead to solutions of the YBE
- Admissible Drinflel'd twist: all set theoretic solutions obtained form p-shelves (racks) and an admissible twist! Prototypical algebraic solutions presented.
- Formulate the underlying quasi-triangular Hopf-like algebraic structures. Well known examples of quantum algebras: Yangians and q-deformed algebras. A new paradigm of Quantum Algebra.

Preliminaries: Set theoretic-YBE

- Let a set $X=\left\{x_{1}, \ldots, x_{\mathcal{N}}\right\}$ and $\check{r}: X \times X \rightarrow X \times X$. Denote

Set-theoretic solution

$$
\check{r}(x, y)=\left(\sigma_{x}(y), \tau_{y}(x)\right)
$$

(1) (X, \check{r}) non-degenerate: σ_{x} and τ_{y} are bijective functions
(2) (X, \check{r}) involutive: $\check{r}\left(\sigma_{x}(y), \tau_{y}(x)\right)=(x, y), \breve{r}^{2}=$ id

- Suppose (X, \check{r}) is an involutive, non-degenerate set-theoretic solution of the Braid equation:

$$
\left(\check{r} \times I d_{X}\right)\left(I d_{X} \times \check{r}\right)\left(\check{r} \times I d_{X}\right)=\left(I d_{X} \times \check{r}\right)\left(\check{r} \times I d_{X}\right)\left(I d_{X} \times \check{r}\right) .
$$

Matrices

- Linearization: $x_{j} \rightarrow e_{x_{j}}$, then $\mathbb{B}=\left\{e_{x_{j}}\right\}, x_{j} \in X$ is a basis of $V=\mathbb{C} X$ space of dimension equal to the cardinality of X. Recall, $e_{x, y}=e_{x} e_{y}^{T}, \mathcal{N} \times \mathcal{N}$ matrices. Set-theoretic ř as $\mathcal{N}^{2} \times \mathcal{N}^{2}$ matrix:

Matrix form

$$
\check{r}=\sum_{x, y \in X} e_{x, \sigma_{x}(y)} \otimes e_{y, \tau_{y}(x)}
$$

- Baxterization for involutive solutions: $\check{r}: V \otimes V \rightarrow V \otimes V: \breve{r}^{2}=I_{V \otimes V}$. Reps of the symmetric group. Baxterization:

$$
\check{R}(\lambda)=\lambda \check{r}+\mathbb{I} \Rightarrow R(\lambda)=\lambda \mathbf{r}+\mathcal{P}
$$

Define $r=\mathcal{P} \check{r}$. In the special case $\check{r}=\mathcal{P}(r=\mathbb{I})$ we recover the Yangian. If $\lambda=0$ then $r=\mathcal{P} \rightarrow$ commuting Hamiltonians!

Local Hamiltonians

- Results by $[A D$ \& Smoktunowicz] and $[A D]$.

Local Hamiltonian

$$
H=\sum_{n=1}^{N} \sum_{x, y \in X} e_{x, \sigma_{x}(y)}^{(n)} e_{y, \tau_{y}(x)}^{(n+1)}
$$

Unlike Yangian, periodic Ham is not $\mathfrak{g l}_{N}$ symmetric...Surprise!
(twisted Yangian coproduts, quasi bialgebra!).
Lyubashenko solution, $\sigma(y)=y+1, \tau(x)=x-1, \bmod \mathcal{N}, x, y \in\{1,2, \ldots, \mathcal{N}\}$,

$$
H=\sum_{n=1}^{N} \sum_{x, y=1}^{\mathcal{N}} e_{x, y+1}^{(n)} e_{y, x-1}^{(n+1)}
$$

- Spectrum and eigenstates of commuting Hams challenging (symmetries of transfer matrix). Deriving Drinfeld twist key step (non-local maps [Soloviev])!
- q-deformed version of the involutive set-theoretic solutions has been constructed via an admissible Drinfeld twist.

Shelves, racks \& quandles

- Shelves, racks \& quandles [Joyce, Matveev, Dehornoy,....] satisfy axioms analogous to the Reidemeister moves used to manipulate knot diagrams. Link invariants, coloring of links a knot is tri-colored or not; Alexander's theorem: all links closed braids. \rightarrow Special non-involutive set-theoretic solutions.

Definition

Let X be a non-empty set and \triangleright a binary operation on X. Then, the pair (X, \triangleright) is said to be a left shelf if \triangleright is left self-distributive, namely, the identity

$$
a \triangleright(b \triangleright c)=(a \triangleright b) \triangleright(a \triangleright c)
$$

is satisfied, for all $a, b, c \in X$. Moreover, a left shelf (X, \triangleright) is called
(1) a left rack if $a \triangleright$ is bijective, for every $a \in X$.
(2) a quandle if (X, \triangleright) is a left rack and $a \triangleright a=a$, for all $a \in X$.
(1) Conjugation quandle. Let (X, \bullet) be a group and $\triangleright: X \times X \rightarrow X$, such that $a \triangleright b=a^{-1} \bullet b \bullet a$. Then (X, \triangleright) is a quandle.
(2) Core quandle: Let (X, \bullet) be a group and $\triangleright: X \times X \rightarrow X$, such that $a \triangleright b=a \bullet b^{-1} \bullet a$. Then (X, \triangleright) is a quandle.

Proposition

Let X be a non empty set, then the map $\check{r}: X \times X \rightarrow X \times X$, such that $\check{r}(a, b)=(b, b \triangleright a)$ is a solution of the braid equation if and only if (X, \triangleright) is a shelve. The solution is invertible if and only if (X, \triangleright) is a rack.

- Solutions from quandles non-involutive! All non-involutive set-theoretic solutions come from quandles by admissible Drinfeld twist [AD, Rybolowicz, Stefanelli].
- Extra motivation: q-deformed racks, quandles....from q braids.

$$
\check{r}=\sum_{a, b \in X} e_{a, b} \otimes e_{b, b \triangleright a}
$$

- $\check{r}^{-1}(a, b)=\left(a \triangleright^{-1} b, a\right), \check{r}(a, b)=(a \triangleright b, a)$ also solution of braid equ.

Self-distributivity - shelve solutions

$$
\check{r}=\sum_{a, b \in X} e_{a, a \triangleright b} \otimes e_{b, a}
$$

$(a \triangleright b) \triangleright(a \triangleright c) \quad a \triangleright b \quad a$

$$
(\check{r} \times i d)(i d \times \check{r})(\check{r} \times i d)=(i d \times \check{r})(\check{r} \times i d)(i d \times \check{r})
$$

Examples of quandles

- Let $i, j \in X:=\{1,2, \ldots, n\}$ and define $i \triangleright j=2 i-j \bmod n:(X, \triangleright)$ is a quandle called the dihedral quandle (a core quandle).
- Special case [Dehornoy]. $n=3, X=\left\{x_{1}, x_{2}, x_{3}\right\}, \triangleright: X \times X \rightarrow X$, such that:

\triangleright	x_{1}	x_{2}	x_{3}
x_{1}	x_{1}	x_{3}	x_{2}
x_{2}	x_{3}	x_{2}	x_{1}
x_{3}	x_{2}	x_{1}	x_{3}

- The 3D vector space. The canonical basis:

$$
\hat{e}_{x_{1}}=\left(\begin{array}{l}
1 \\
0 \\
0
\end{array}\right), \hat{e}_{x_{2}}=\left(\begin{array}{l}
0 \\
1 \\
0
\end{array}\right), \hat{e}_{x_{3}}=\left(\begin{array}{l}
0 \\
0 \\
1
\end{array}\right)
$$

Recall $\check{r}=\sum_{x, y \in X} e_{x, y} \otimes e_{y, y \triangleright x}$, where $e_{x, y}$ the elementary 3×3 matrix $e_{x, y}=e_{x} e_{y}^{T}$. I.e. $\check{r}=\sum_{j=1}^{3} e_{x_{j}, x_{j}} \otimes e_{x_{j}, x_{j}}+e_{x_{1}, x_{2}} \otimes e_{x_{2}, x_{3}}+e_{x_{2}, x_{1}} \otimes e_{x_{1}, x_{3}}+\ldots$

The ř matrix:

$$
\check{r}=\left(\begin{array}{lllllllll}
1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 \\
0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 \\
0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1
\end{array}\right)
$$

- $\check{r}^{-1}=\check{r}^{T}$. Unitary quantities from Twisted Yangian, $[A D]$ in progress.
- Combinatorial matrices! [Kauffman...]: qudits, topological quantum computing - braid gates.

More quandles: Affine (or Alexander) quandles.

Let X be a non empty set equipped with two group operations, + and o. Define $\triangleright: X \times X \rightarrow X$, such that for $z \in X$ and $\forall a, b \in X, a \triangleright b=-a \circ z+b \circ z+a$. Similar to a $\mathbb{Z}\left(t, t^{-1}\right)$ ring module. (For non-abelian $(X,+)$ [AD, Stefanelli, Rybolowicz]).

KEY STATEMENTS.

(1) All involutive set-theoretic solutions, $\check{r}=\sum_{a, b \in X} e_{a, \sigma_{a}(b)} \otimes e_{b, \tau_{b}(a)}$ come from the permutation operator via an admissible Drilfenl'd twist (similarity) [AD].
(2) All generic non-involutive set-theoretic solutions come from quandle solutions operator via an admissible Drilfenl'd twist [AD, Stefanelli, Rybolowicz].
To be generalized in the parametric case.

Parametric set-theoretic YBE

- Let $X, Y \subseteq X$ be non-empty sets, $z_{i, j} \in Y, i, j \in \mathbb{Z}^{+}$and $R^{z_{i j}}: X \times X \rightarrow X \times X$, such that for all $x, y \in X, R^{z_{i j}}(y, x)=\left(\sigma_{x}^{z_{i j}}(y), \tau_{y}^{z_{i j}}(x)\right)$. $\left(X, R^{z_{i j}}\right)$ is a solution of the parametric, set-theoretic YBE if

Parametric set-theoretic YBE

$$
R_{12}^{z_{12}} R_{13}^{z_{13}} R_{23}^{z_{23}}=R_{23}^{z_{23}} R_{13}^{z_{13} 3} R_{12}^{z_{12}}
$$

$$
\begin{aligned}
& R_{12}^{z_{i j}}(c, b, a)=\left(\sigma_{b}^{z_{i j}}(c), \tau_{c}^{z_{i j}}(b), a\right), \quad R_{13}^{z_{i j}}(c, b, a)=\left(\sigma_{a}^{z_{i j}}(c), b, \tau_{c}^{z_{i j}}(a)\right) \text { and } \\
& R_{23}^{z_{i j}}(c, b, a)=\left(c, \sigma_{a}^{z_{i j}}(b), \tau_{b}^{z_{i j}}(a)\right) .
\end{aligned}
$$

- $R^{z_{i j}}$ is a left non-degenerate if $\forall, z_{i, j} \in Y, \sigma_{x}^{z_{i j}}$ is a bijecton and non-degenerate if both $\sigma_{x}^{z_{i j}}, \tau_{y}^{z_{i j}}$ are bijections. $z_{i j}$ denotes dependence on $\left(z_{i}, z_{j}\right)$.
- $R^{z_{i j}}$ is called "reversible" if $R_{21}^{z_{21}} R_{12}^{z_{12}}=$ id [Bobenko, Suris, Papageorgiou, Veselov]. All solutions from discrete integrable systems are reversible.
- For the first time we present non-unitary solutions of the p set-theoretic YBE.
- Focus first on special type of solution $R^{z_{i j}}: X \times X \rightarrow X \times X$ such that $R^{z_{i j}}(a, b)=\left(a, a \triangleright_{z_{i j}} b\right)$.

Definition

Let $X, Y \subseteq X$ be non empty sets. We define for all $z_{i, j} \in Y$, the binary operation $\triangleright_{z_{i j}}: X \times X \rightarrow X,(a, b) \mapsto a \triangleright_{z_{i j}} b$. The pair $\left(X, \triangleright_{z_{i j}}\right)$ is said to be a left parametric (p)-shelf if $\triangleright_{z_{i j}}$ satisfies the generalized left p-self-distributivity:

$$
a \triangleright_{z_{i k}}\left(b \triangleright_{z_{j k}} c\right)=\left(a \triangleright_{z_{i j}} b\right) \triangleright_{z_{j k}}\left(a \triangleright_{z_{i k}} c\right)
$$

for all $a, b, c \in X, z_{i, j, k} \in Y$. Moreover, a left p-shelf $\left(X, \triangleright_{z_{i j}}\right)$ is called a left p-rack if the maps $L_{a}^{z_{i j}}: X \rightarrow X$ defined by $L_{a}^{z_{i j}}(b):=a \triangleright_{z_{i j}} b$, for all $a, b, \in X, z_{i, j} \in Y$, are bijective.

- Henceforth, whenever we say p-shelf or p-rack we mean left p-shelf or left p-rack.

Proposition

Let $X, Y \subseteq X$ be non empty sets. We define for $z_{i, j} \in Y$ the binary operation $\triangleright_{z_{i j}}: X \times X \rightarrow X,(a, b) \mapsto a \triangleright_{z_{i j}} b$. Then $R^{z_{i j}}: X \times X \rightarrow X \times X$, such that for all $a, b \in X, z_{i, j} \in Y, R^{z_{i j}}(b, a)=\left(b, b \triangleright_{z_{i j}} a\right)$ is a solution of the parametric set-theoretic Yang-Baxter equation if and only if $\left(X, \triangleright_{z_{i j}}\right)$ is a p-shelf. If $R^{z_{i j}}$ invertible then $\left(X, \triangleright_{z_{i j}}\right)$ is a p-rack.

Proof. Equating LHS and RHS of YBE.

Definition (skew braces)

[Rump, Guarnieri \& Vendramin] A left skew brace is a set B together with two group operations $+, \circ: B \times B \rightarrow B$, the first is called addition and the second is called multiplication, such that for all $a, b, c \in B$,

$$
a \circ(b+c)=a \circ b-a+a \circ c .
$$

If + is an abelian group operation B is called a left brace. Moreover, if B is a left skew brace and for all $a, b, c \in B(b+c) \circ a=b \circ a-a+c \circ a$, then B is called a two sided skew brace.

- The additive identity of a skew brace B will be denoted by 0 and the multiplicative identity by 1 . In every skew brace $0=1$. Braces \rightarrow radical rings [Rump, Smoktunowicz,...]!
From now on when we say skew brace we mean left skew brace.

Examples of braces

Example

1. Finite braces. Let $U\left(\mathbb{Z} / 2^{n} \mathbb{Z}\right)=: U_{n}$ denote a set of odd integers mod $2^{n}, n \in \mathbb{N}$.

Define also $+_{1}: U_{n} \times U_{n} \rightarrow U_{n}$, such that $a+_{1} b:=a-1+b$, for all $a, b \in U_{n}$. Moreover, + is the usual addition and \circ is the usual multiplication of integers. Then the triplet $\left(U_{n},{ }_{1}, \circ\right)$ is a brace. For instance: 1. $n=1, U_{1}=\{1\}, 2 . n=2$, $U_{2}=\{1,3\}, 3 . n=3, U_{2}=\{1,3,5,7\} \ldots$

Example

2. Infinite braces. Consider a set $O:=\left\{\left.\frac{2 n+1}{2 k+1} \right\rvert\, n, k \in \mathbb{Z}\right\}$ together with two binary operations $+_{1}: O \times O \rightarrow O$ such that $(a, b) \mapsto a-1+b$ and $\circ: O \times O \rightarrow O$ such that $(a, b) \mapsto a \circ b$, where,$+ \circ$ are addition and multiplication of rational numbers, respectively. Then the triplet $\left(O,+_{1}, \circ\right)$ is a brace

Solutions from p-racks

Proposition

Let $(X,+, \circ)$ be a skew brace and $Y \subseteq X$, such that

- for all $a, b \in X, z \in Y,(a+b) \circ z=a \circ z-z+b \circ z$,
- $z \in Y$ are central in $(X,+)$.

Define also for all $z_{i, j} \in Y$ the binary operation $\triangleright_{z_{i j}}: X \times X \rightarrow X$, such that for all $a, b \in X$,
(1) $a \triangleright_{z_{i j}} b=-a \circ z_{i} \circ z_{j}^{-1}+b+a \circ z_{i} \circ z_{j}^{-1}$.
(2) $a \triangleright_{z_{i j}} b=-a \circ z_{i} \circ z_{j}^{-1} \circ z+b \circ z+a \circ z_{i} \circ z_{j}^{-1}, \quad z \in Y$.

Then the map $R^{z_{i j}}: X \times X \rightarrow X \times X$, such that for all $a, b \in X, z_{i, j} \in Y$,

$$
R^{z_{i j}}(a, b)=\left(a, a \triangleright_{z_{i j}} b\right)
$$

is a solution of the parametric Yang-Baxter equation. The map $R^{z_{i j}}$ is invertible.
Proof. It suffices to show parametric self-disctributivity for $\triangleright_{z_{i j}}$, which indeed holds. Also, $\triangleright_{z_{i j}}$, is a bijection indeed.

- Remark. In the special case where $(X,+, \circ)$ is a brace, i.e. $(X,+)$ is an abelian group, then in cae 1 , for all $a, b \in X, z_{i, j} \in Y, a \triangleright_{z_{i j}} b=b$, and hence $R^{z_{i j}}=\mathrm{id}$.

Generic solutions

- We focus on the generic solution of the set-theoretic YBE, $R^{z_{i j}}: X \times X \rightarrow X \times X$, such that for all $a, b \in X, z_{i, j} \in Y$,

$$
R^{z_{i j}}(b, a)=\left(\sigma_{a}^{z_{i j}}(b), \tau_{b}^{z_{i j}}(a)\right)
$$

- In this case, p-biracks and p-biquandles (two binary operations). Biracks and biquandles: virtual links and braids (ribbons).
- Generic solution obtained via admisssible Drinfeld twist!!

Definition

Let $\left(X, \triangleright_{z_{i j}}\right)$ be a p-shelf. We say that the twist $\varphi^{z_{i j}}: X \times X \rightarrow X \times X$, such that $\varphi^{z_{i j}}(a, b):=\left(a, \sigma_{a}^{z_{j i}}(b)\right)$ for all $a, b \in X, z_{i, j} \in Y$ is admissible, if for all $a, b, c \in X$, $z_{i, j, k} \in Y:\left(\sigma_{a}^{z_{i k}}\left(\sigma_{b}^{z_{i j}}(c)\right)=\sigma_{\sigma_{a}^{z_{j i k}}(b)}\left(\sigma_{\tau_{b}^{z_{i j}}(a)}^{z_{j i k}}(c)\right) \& \sigma_{c}^{z_{i k}}(b) \triangleright_{z_{i j}} \sigma_{c}^{z_{j k}}(a)=\sigma_{c}^{z_{j k}}\left(b \triangleright_{z_{i j}} a\right)\right.$.

Admissible twists \& general solutions

Theorem

Let $\left(X, \triangleright_{z_{i j}}\right)$ be a p-shelf and $\varphi^{z_{i j}}: X \times X \rightarrow X \times X$, such that $\varphi^{z_{i j}}(a, b):=\left(a, \sigma_{a}^{z_{j i}}(b)\right)$ for all $a, b \in X, z_{i, j} \in Y$. Then, the map $R^{z_{i j}}: X \times X \rightarrow X \times X$ defined by

$$
R^{z_{i j}}(a, b)=\left(\sigma_{a}^{z_{i j}}(b),\left(\sigma_{\sigma_{a}^{z_{j i}}(b)}^{z_{j i}}\right)^{-1}\left(\sigma_{a}^{z_{i j}}(b) \triangleright_{z_{i j}} a\right)\right)
$$

for all $a, b \in X, z_{i, j} \in Y$ is a solution if and only if $\varphi^{z_{i j}}$ is an admissible twist.
Proof. The proof is involved based on the (1), (2) of the Definition of the adm. twist and the fundamental relations from the YBE. $R^{z_{i j}}=\left(\varphi^{z_{i j}}\right)^{-1} S^{z_{i j}}\left(\varphi^{z_{j i}}\right)^{(o p)}$, where $S^{z_{i j}}(x, y)=\left(x, x \triangleright_{z_{i j}} y\right)$.

- Conclusion. The problem of generic solutions of the p set-theoretic Yang-Baxter equation is reduced to the classification of p-shelve/rack solutions \& admissible twists.
- Explicit solutions derived [AD].
- Back to the linearized version, recall:
(1) $R^{z_{i j}}=\sum_{a, d \in X} e_{b, \sigma_{a}^{z_{i j}}(b)} \otimes e_{a, \tau_{b}^{z_{i j}}(a)}$, generic set-theoretic solutions:
(2) $R^{z_{i j}}=\sum_{a, b \in X} e_{b, a} \otimes e_{a, b \triangleright_{z_{i j} a} a}$, p-shelves solutions,
- Linearization formally generalizes to infinite countable sets \& for compact sets, use of functional analysis and study of kernels of integral operators required.
- We establish the algebraic framework in the tensor product formulation. This naturally provides solutions to the parametric set-theoretic YBE, thus the linearized version is essential in what follows.
- Next, explore algebraic structures that provide universal \mathcal{R}-matrices associated to p-rack and general set-theoretic solutions of the YBE.

p-rack algebras

Definition

Let $Y \subseteq X$ be non-empty sets. We define for all $z_{i, j, k} \in Y$, the binary operation, $\triangleright_{z_{i j}}: X \times X \rightarrow X,(a, b) \mapsto a \triangleright_{z_{i j}} b$. Let also $\left(X, \triangleright_{z_{i j}}\right)$ be a finite magma, or such that $a \triangleright_{z_{i j}}$ is surjective, for every $a \in X, z_{i, j} \in Y$. We say that the unital, associative algebra \mathcal{Q}, over a field k generated by, $1_{\mathcal{Q}}, q_{a}^{z_{i j}},\left(q_{a}^{z_{i j}}\right)^{-1}, h_{a} \in \mathcal{Q}\left(h_{a}=h_{b} \Leftrightarrow a=b\right)$ and relations for all $a, b \in X, z_{i, j, k} \in Y$:

$$
\begin{aligned}
& q_{a}^{z_{i j}}\left(q_{a}^{z_{i j}}\right)^{-1}=\left(q_{a}^{z_{i j}}\right)^{-1} q_{a}^{z_{i j}}=1_{\mathcal{Q}}, \quad q_{a}^{z_{j k}} q_{b}^{z_{i k}}=q_{b}^{z_{i k}} q_{b \triangleright_{z_{i j} a}^{z_{j k}}}, \\
& h_{a} h_{b}=\delta_{a, b} h_{a}, \quad q_{b}^{z_{i j}} h_{b \triangleright_{z_{i j} a}}=h_{a} q_{b}^{z_{i j}}
\end{aligned}
$$

is a p-rack algebra.

The choice of the name p-rack algebra is justified by the following result.

Proposition

Let \mathcal{Q} be the p-rack algebra, then for all $a, b, c \in X$ and $z_{i, j, k} \in Y$, $c \triangleright_{z_{i k}}\left(b \triangleright_{z_{j k}} a\right)=\left(c \triangleright_{z_{i j}} b\right) \triangleright_{z_{j k}}\left(c \triangleright_{z_{i k}} a\right)$, i.e. $\left(X, \triangleright_{z_{i j}}\right)$ is a p-rack.

Proof. We compute $h_{a} q_{b}^{z_{j k}} q_{c}^{z_{i k}}$ using the associativity of the algebra, also due to invertibility of $q_{a}^{z_{i j}}$ for all $a \in X, z_{i, j} \in Y$:

$$
h_{c \triangleright_{z_{i k}}\left(b \triangleright_{z_{j k}} a\right)}=h_{\left(c \triangleright_{z_{i j}} b\right) \triangleright_{z_{j k}}\left(c \triangleright_{z_{i k}} a\right)} \Rightarrow c \triangleright_{z_{i k}}\left(b \triangleright_{z_{j k}} a\right)=\left(c \triangleright_{z_{i j}} b\right) \triangleright_{z_{j k}}\left(c \triangleright_{z_{i k}} a\right)
$$

Also, $a \triangleright_{z_{i j}}$ is bijective and thus $\left(X, \triangleright_{z_{i j}}\right)$ is a p-rack.

The universal R-matrix

Proposition

Let \mathcal{Q} be the p-rack algebra and $\mathcal{R}^{z_{i j}} \in \mathcal{Q} \otimes \mathcal{Q}$ be an invertible element, such that $\mathcal{R}^{z_{i j}}=\sum_{a} h_{a} \otimes q_{a}^{z_{i j}}, z_{i, j} \in Y$. Then $\mathcal{R}^{z_{i j}}$ satisfies the parametric Yang-Baxter equation

$$
\mathcal{R}_{12}^{z_{12}} \mathcal{R}_{13}^{z_{13}} \mathcal{R}_{23}^{z_{23}}=\mathcal{R}_{23}^{z_{23}} \mathcal{R}_{13}^{z_{13}} \mathcal{R}_{12}^{z_{12}}
$$

$\mathcal{R}_{12}^{z_{12}}=\sum_{a \in X} h_{a} \otimes q_{a}^{z_{12}} \otimes 1_{\mathcal{Q}}, \mathcal{R}_{13}^{z_{13}}=\sum_{a \in X} h_{a} \otimes 1_{\mathcal{Q}} \otimes q_{a}^{z_{13}}$, and $\mathcal{R}_{23}^{z_{23}}=\sum_{a \in X} 1_{\mathcal{Q}} \otimes h_{a} \otimes q_{a}^{z_{2} 3}$. The inverse \mathcal{R}-matrix is $\left(\mathcal{R}^{z_{i j}}\right)^{-1}=\sum_{a \in X} h_{a} \otimes\left(q_{a}^{z_{i j}}\right)^{-1}$.

Proof. From YBE and p-rack algebra relations. Also, $\left(\mathcal{R}^{z_{i j}}\right)^{-1}=\sum_{a \in X} h_{a} \otimes\left(q_{a}^{z_{i j}}\right)^{-1}$.

- Fundamental representation: Recall, $e_{i, j}, n \times n$ matrices with elements $\left(e_{i, j}\right)_{k, l}=\delta_{i, k} \delta_{j, I}$. Let \mathcal{Q} be the p-rack algebra and $\rho: \mathcal{Q} \rightarrow \operatorname{End}(V)$, defined by $q_{a}^{z_{i j}} \mapsto \sum_{x \in X} e_{x, a \triangleright_{z_{i j} x} x}, \quad h_{a} \mapsto e_{a, a}$. Then $\mathcal{R}^{z_{i j}} \mapsto R^{z_{i j}}=\sum_{a, b \in X} e_{b, b} \otimes e_{a, b \triangleright_{z_{i j} a}}$: the linearized p-rack solution.

Definition

A p-rack algebra \mathcal{Q} is called a restricted p-rack algebra if for all $z_{i, j} \in Y$ there exits a binary operation $\bullet_{z_{i j}}: X \times X \rightarrow X,(a, b) \mapsto a \bullet_{z_{i j}}$, such that, $a \bullet_{z_{i j}}$, is a bijection and $a \bullet_{z_{j i}} b=b \bullet_{z_{i j}}\left(b \triangleright_{z_{i j}} a\right)$, for all $a, b \in X, z_{i, j} \in Y$.

- NOTE. In the parameter free case: motivated by pre-Lie algebras (chronological algebras) [Agrachev, Gerstenhaber....] introduce the pre-Lie skew brace. Identified families of affine quandles that generate pre-Lie skew braces [AD, Rybolowicz, Stefanelli].

Theorem

Let \mathcal{Q} be the restricted p-rack algebra and $\mathcal{R}^{z_{i j}}=\sum_{a} h_{a} \otimes q_{a}^{z_{i j}} \in \mathcal{Q} \otimes \mathcal{Q}$ be a solution of the Yang-Baxter equation. Moreover, assume that for all $z_{i, j, k} \in Y, a, b \in X$, $\left(b \triangleright_{z_{i j}} a_{1}\right) \bullet_{z_{j k}}\left(b \triangleright_{z_{i k}} a_{2}\right)=b \triangleright_{z_{i j}}\left(a_{1} \bullet_{z_{j k}} a_{2}\right)$. We also define for $z_{i, j, k} \in Y$, $\Delta_{z_{i j}}: \mathcal{Q} \rightarrow \mathcal{Q} \otimes \mathcal{Q}$, such that for all $a \in X$,

$$
\Delta_{z_{j k}}\left(\left(q_{a}^{z_{i k}}\right)^{ \pm 1}\right):=\left(q_{a}^{z_{i j}}\right)^{ \pm 1} \otimes\left(q_{a}^{z_{i k}}\right)^{ \pm 1}, \quad \Delta_{z_{i j}}\left(h_{a}\right):=\left.\sum_{b, c \in X} h_{b} \otimes h_{c}\right|_{b \bullet_{z_{i j} c} c=a}
$$

Then the following statements hold:
(1) $\Delta_{z_{i j}}$ is a \mathcal{Q} algebra homomorphism for all $z_{i, j} \in Y$.
(2) $\mathcal{R}^{z_{j k}} \Delta_{z_{j k}}(y)=\Delta_{z_{k j}}^{(o p)}(y) \mathcal{R}^{z_{j k}}$, for all $z_{j, k} \in Y, y \in\left\{h_{a}, q_{a}^{z_{i k}}\right\}$. Recall $\Delta_{z_{i j}}^{(o p)}:=\pi \circ \Delta_{z_{i j}}$, where π is the flip map.

Parametric co-associativity

- Proposition. Let \mathcal{Q} be the restricted p-rack algebra, assume also that for all $a, b, c \in X$ and $z_{i, j, k} \in Y,\left(b \triangleright_{z_{i j}} a\right) \bullet_{z_{j k}}\left(b \triangleright_{z_{i k}} c\right)=b \triangleright_{z_{i k}}\left(a \bullet_{z_{j k}} c\right)$ and $\left(a \bullet_{z_{i j}} b\right) \bullet_{z_{j k}} c=a \bullet_{z_{i k}}\left(b \bullet_{z_{j k}} c\right)$.
We also define for $z_{i, 1,2, \ldots, n} \in Y, \Delta_{z_{12} \ldots n}^{(n)}: \mathcal{Q} \rightarrow \mathcal{Q}^{\otimes n}$, such that

$$
\begin{aligned}
& \Delta_{z_{12 \ldots n}^{(n)}}^{(n)}\left(\left(q_{a}^{z_{i n}}\right)^{ \pm 1}\right)=\left(q_{a}^{z_{i 1}}\right)^{ \pm 1} \otimes\left(q_{a}^{z_{i 2}}\right)^{ \pm 1} \otimes \ldots\left(\otimes q_{a}^{z_{i n}}\right)^{ \pm 1} \\
& \Delta_{z_{12} \ldots n}^{(n)}\left(h_{a}\right):=\left.\sum_{a_{1}, \ldots, a_{n} \in X} h_{a_{1}} \otimes h_{a_{2}} \otimes \ldots \otimes h_{a_{n}}\right|_{\prod_{z_{1} \ldots n}\left(a_{1}, a_{2}, \ldots, a_{n}\right)=a}
\end{aligned}
$$

where for all $a_{1}, a_{2}, \ldots, a_{n} \in X, z_{1}, \ldots, z_{n} \in Y$:

$$
\begin{aligned}
\Pi_{z_{12}}\left(a_{1}, a_{2}\right): & =a_{1} \bullet_{z_{12}} a_{2} \\
\Pi_{z_{12} \ldots n}\left(a_{1}, a_{2}, \ldots, a_{n}\right): & =a_{1} \bullet_{z_{1 n}}\left(a_{2} \bullet_{z_{2 n}}\left(a_{3} \ldots \bullet_{z_{n-2 n}}\left(a_{n-1} \bullet_{z_{n-1}} a_{n}\right) \ldots\right)\right) \\
& =\left(\left(\ldots\left(\left(a_{1} \bullet_{z_{12}} a_{2}\right) \bullet_{z_{23}} a_{3}\right) \ldots a_{n-1}\right) \bullet_{z_{n-1}} a_{n}, n>2 .\right.
\end{aligned}
$$

Then:
(1) For all $z_{i, 1,2, \ldots n} \in Y$,

$$
\Delta_{z_{12} \ldots n}^{(n)}:=\left(\Delta_{z_{12 \ldots n-1}}^{(n-1)} \otimes \mathrm{id}\right) \Delta_{z_{n-1 n}}=\left(\mathrm{id} \otimes \Delta_{z_{23} \ldots n}^{(n-1)}\right) \Delta_{z_{1 n}} .
$$

(2) For all $a, b \in X, z_{i, 1,2, \ldots n} \in Y, \Delta_{z_{12} \ldots n}^{(n)}$ is an algebra homomorphism.

Example

Consider the binary operations $\bullet_{z_{i j}}$, $\triangleright_{z_{i j}}: X \times X \rightarrow X$ such as $a \bullet_{z_{i j}} b=a \circ z_{i}+b \circ z_{j}$ and $a \triangleright_{z_{i j}} b=-a \circ z_{i} \circ z_{j}^{-1}+b+a \circ z_{i} \circ z_{j}^{-1}$, then for all $a, b, c \in X, z_{i, j, k} \in Y$,

$$
\left(a \triangleright_{z_{i j}} b\right) \bullet_{z_{j k}}\left(b \triangleright_{z_{i k}} c\right)=a \triangleright_{z_{i o}}\left(b \bullet_{z_{j k}} c\right), \quad\left(a \bullet_{z_{i j}} b\right) \bullet_{z_{o k}} c=a \bullet_{z_{i o}}\left(b \bullet_{z_{j k}} c\right)
$$

where $z_{o}=1$ and

$$
\Pi_{z_{1} \ldots z_{n}}\left(a_{1}, a_{2}, \ldots, a_{n}\right)=a_{1} \circ z_{1}+a_{2} \circ z_{2}+\ldots+a_{n-1} \circ z_{n-1}+a_{n} \circ z_{n}
$$

Binary Trees

Graphical representation of the parametric co-product $\Delta_{z_{12}}$:

The $n^{\text {th }}$ coproduct $\Delta_{z_{12} \ldots n}^{(n)}, a \in X, z_{k, 1,2, \ldots n} \in Y$ is depicted by 2^{n-2} equivalent diagrams.

$$
\Delta_{z_{12} \ldots n}^{(n)}:=\left(\Delta_{z_{12} \ldots n-1}^{(n-1)} \otimes \mathrm{id}\right) \Delta_{z_{n-1 n}}=\left(\mathrm{id} \otimes \Delta_{z_{23} \ldots n}^{(n-1)}\right) \Delta_{z_{1 n}} .
$$

Unfolding $\Delta^{(n-1)}$ in the LHS and RHS produces 2^{n-2} binary tree diagrams.

The parameter free case: quasi-triangular Hopf algebra

- The p-rack algebra reduces to a rack algebra in the parameter free case. In this case one recovers a quasi-triangular Hopf algebra if (X, \bullet) is a group [AD, Rybolowicz, Stefanelli].

Theorem

Let \mathcal{A} be a rack algebra, with (X, \bullet, e) being a group. Let also $\mathcal{R}=\sum_{a \in X} h_{a} \otimes q_{a}$ be a solution of the Yang-Baxter equation and $q_{a} \in \mathcal{A}$ are such that $q_{a} q_{b}=q_{a \bullet b}$. Then the structure $(\mathcal{A}, \Delta, \epsilon, S, \mathcal{R})$ is a quasi-triangular Hopf algebra:

- Co-product. $\Delta: \mathcal{A} \rightarrow \mathcal{A} \otimes \mathcal{A}, \Delta\left(q_{a}^{ \pm 1}\right)=q_{a}^{ \pm 1} \otimes q_{a}^{ \pm 1}$ and $\Delta\left(h_{a}\right)=\left.\sum_{b, c \in X} h_{b} \otimes h_{c}\right|_{b \bullet c=a}$.
- Co-unit. $\epsilon: \mathcal{A} \rightarrow k, \epsilon\left(q_{a}^{ \pm 1}\right)=1, \epsilon\left(h_{a}\right)=\delta_{a, e}$.
- Antipode. $S: \mathcal{A} \rightarrow \mathcal{A}, S\left(q_{a}^{ \pm 1}\right)=q_{a}^{\mp 1}, S\left(h_{a}\right)=h_{a^{*}}$, where a^{*} is the inverse in (X, \bullet) for all $a \in X$.
- Relevant: Pointed Hopf Algebras from racks [Andruskiewitsch \& Grana].

The p-decorated algebra

(1) Let \mathcal{Q} be the p-rack algebra. Let also $\sigma_{a}^{z_{i j}}, \tau_{b}^{z_{i j}}: X \rightarrow X$, and $\sigma_{a}^{z_{i j}}$ be a bijection for all $a \in X, z_{i, j} \in Y$. We say that the unital, associative algebra $\hat{\mathcal{Q}}$ over k, generated by intederminates $q_{a}^{z_{i j}},\left(q_{a}^{z_{i j}}\right)^{-1}, h_{a}, \in \mathcal{Q}$ and $w_{a}^{z_{i j}},\left(w_{a}^{z_{i j}}\right)^{-1} \in \hat{\mathcal{A}}, a \in X$, $1_{\hat{\mathcal{Q}}}=1_{\mathcal{Q}}$ is the unit element and relations, for $a, b \in X, z_{i, j, k} \in Y:$

Decorated p-rack algebras

$$
\begin{aligned}
& q_{a}^{z_{i j}}\left(q_{a}^{z_{i j}}\right)^{-1}=\left(q_{a}^{z_{i j}}\right)^{-1} q_{a}^{z_{i j}}=1_{\hat{\mathcal{Q}}}, \quad q_{a}^{z_{j k}} q_{b}^{z_{i k}}=q_{b}^{z_{i k}} q_{b \nabla_{z_{i j} a}^{z_{j k}}}, \quad h_{a} h_{b}=\delta_{a, b} h_{a}, \\
& q_{b}^{z_{i j}} h_{b \triangleright_{z_{i j} a}}=h_{a} q_{b}^{z_{i j}} \quad w_{a}^{z_{i j}}\left(w_{a}^{z_{i j}}\right)^{-1}=1_{\hat{\mathcal{A}}}, \quad w_{a}^{z_{k i}} w_{b}^{z_{j i}}=w_{\sigma_{a}^{z_{j i}}(b)}^{z_{z_{j k}}} \underset{\tau_{b}^{z_{k i}}}{\tau_{k j}}(a) \\
& w_{a}^{z_{j i}} h_{b}=h_{\sigma_{a}^{z_{i j}}(b)} w_{a}^{z_{j i}}, \quad w_{a}^{z_{k j}} q_{b}^{z_{i j}}=q_{\sigma_{a}^{z_{i j}}(b)}^{z_{i j}} w_{a}^{z_{k j}}
\end{aligned}
$$

is a decorated p-rack algebra.

- Proposition. Let $\hat{\mathcal{Q}}$ be the decorated p-rack algebra, then for all $a, b, c \in X$, $z_{i, j, k} \in Y$:

$$
\sigma_{a}^{z_{i k}}\left(\sigma_{b}^{z_{i j}}(c)\right)=\sigma_{\sigma_{a}^{z_{j k}}(b)}^{z_{j i}}\left(\sigma_{\tau_{b}^{z_{i k}}(a)}^{z_{j k}}(c)\right) \quad \& \quad \sigma_{c}^{z_{i k}}(b) \triangleright_{z_{i j}} \sigma_{c}^{z_{j k}}(a)=\sigma_{c}^{z_{j k}}\left(b \triangleright_{z_{i j}} a\right) .
$$

Proof. Follow from the algebra associativity. These are the conditions of the Def of an admissible twist!

- Proposition. Let $\hat{\mathcal{Z}}$ be the decorated p-rack algebra and $\mathcal{R}^{z_{i j}}=\sum_{a} h_{a} \otimes q_{a}^{z_{i j}} \in \mathcal{Q} \otimes \mathcal{Q}$ be a solution of the Yang-Baxter equation. We also define for $z_{i, j, k} \in Y, \Delta_{z_{i j}}: \mathcal{Q} \rightarrow \mathcal{Q} \otimes \mathcal{Q}$, such that for all $a \in X$,

$$
\begin{aligned}
& \quad \Delta_{z_{j k}}\left(\left(y_{a}^{z_{i k}}\right)^{ \pm 1}\right):=\left(y_{a}^{z_{i j}}\right)^{ \pm 1} \otimes\left(y_{a}^{z_{i k}}\right)^{ \pm 1}, \quad \Delta_{z_{i j}}\left(h_{a}\right):=\left.\sum_{b, c \in X} h_{b} \otimes h_{c}\right|_{b \bullet_{z_{i j}} c=a} . \\
& y_{a}^{z_{i k}} \in\left\{q_{a}^{z_{i k}}, w_{a}^{z_{i k}}\right\} .
\end{aligned}
$$

Then the following statements hold:
(1) $\Delta_{z_{i j}}$ is a $\hat{\mathcal{Q}}$ algebra homomorphism for all $z_{i, j} \in Y$.
(2) $\mathcal{R}^{z_{j k}} \Delta_{z_{j k}}\left(y_{a}^{z_{i k}}\right)=\Delta_{z_{k j}}^{(o p)}\left(y_{a}^{z_{i k}}\right) \mathcal{R}^{z_{j k}}$, for $y_{a}^{z_{i k}} \in\left\{q_{a}^{z_{i k}}, w_{a}^{z_{i k}}\right\}, a \in X$, $z_{i, j, k} \in Y$. Recall, $\Delta_{z_{i j}}^{(o p)}:=\pi \circ \Delta_{z_{i j}}$, where π is the flip map.

Universal R-matrix by twisting

- Proposition. Let $\mathcal{R}^{z_{i j}}=\sum_{a \in X} h_{a} \otimes q_{a}^{z_{i j}} \in \mathcal{Q} \otimes \mathcal{Q}$ be the p-rack universal \mathcal{R}-matrix. Let also $\hat{\mathcal{Q}}$ be the decorated p-rack algebra and $\mathcal{F}^{z_{i j}} \in \hat{\mathcal{Q}} \otimes \hat{\mathcal{Q}}$, such that $\mathcal{F}^{z_{i j}}=\sum_{b \in X} h_{b} \otimes\left(w_{b}^{z_{i j}}\right)^{-1}$ (invertible) for all $z_{i, j} \in Y$ then \mathcal{F} is an admissible twist. This guarantees that if \mathcal{R} is a solution of the YBE then \mathcal{R}^{f} also is!
- The twisted \mathcal{R}-matrix:

$$
\mathcal{R}^{F z_{12}}=\left(\mathcal{F}^{z_{21}}\right)^{(o p)} \mathcal{R}^{z_{12}}\left(\mathcal{F}^{z_{12}}\right)^{-1}
$$

- The twisted coproducts: for $z_{12} \in Y, \Delta_{z_{12}}^{F}(y)=\mathcal{F}^{z_{12}} \Delta_{z_{12}}(y)\left(\mathcal{F}^{z_{12}}\right)^{-1}, y \in \hat{\mathcal{Q}}$. Moreover it follows that $\mathcal{R}^{F z_{21}} \Delta_{z_{12}}^{F}(y)=\Delta_{z_{12}}^{F(o p)}(y) \mathcal{R}^{F z_{12}}, y \in \hat{\mathcal{Q}}, z_{1,2} \in Y$.
- Fundamental representation \& the set-theoretic solution: Let $\hat{\mathcal{Q}}$ be the decorated p-rack algebra, $\rho: \hat{\mathcal{Q}} \rightarrow \operatorname{End}(V)$, such that

$$
q_{a}^{z_{i j}} \mapsto \sum_{a} e_{x, a \triangleright} \nabla_{z_{i j} x}, \quad h_{a} \mapsto e_{a, a}, \quad w_{a}^{z_{i j}} \mapsto \sum_{b \in X} e_{\sigma_{a} z_{j i}(b), b},
$$

then $\mathcal{R}^{F z_{i j}} \mapsto R^{F z_{i j}}=\sum_{a, b \in X} e_{b, \sigma_{a}^{z_{i j}}(b)} \otimes e_{a, \tau_{b}^{z_{i j}}(a)}$, where
$\tau_{b}^{z_{i j}}(a):=\sigma_{\left(\sigma_{a}^{z_{j i}}\right)^{-1}(b)}\left(\sigma_{a}^{z_{i j}}(b) \triangleright_{z_{i j}} a\right)$.
$R^{F z_{i j}}$ is the linearized version of the set-theoretic solution.

- The associated quantum algebra (non-parametric case) is a quasi-triangular quasi Hopf algebra [AD, Vlaar, Ghionis].

