A note on the scattering for 3D quantum
Zakharov system with non-radial data in L?

Chunyan Huang

Abstract In this note, we give a remark on the scattering for quantum Zakharov
system with non-radial small initial data in L> with one order additional angular
regularity using the generalized Strichartz estimate with wider range and the normal
form transformation.

1 Introduction

We study the scattering of solutions to the 3D quantum Zakharov system

i, + Au— €2A%u = nu,
Ny —An+€2A%n = A(|u)?), 1)
u(0,x) = up, n(0,x) = ng, dn(0,x) = ny,

where u(t,x) : R! x R? — C is the envelope electric field and n(z,x) : R x R? — R
describes the plasma density fluctuation. The quantum parameter 0 < € < 1 is the
ratio between the ion plasmon energy and the electron thermal energy. For detailed
background of this system, see [6].

The solutions (u,n) of (1) preserve the mass ||u(z)]|;2 and the energy

1
E(u,n,on) = /Ri Vu() +€*[Au()]? +nluf + S (1D~ [ 41 + &2 Vn(0) ) dx.

When € =0, (1) reduces to the classical Zakharov system.
For simplicity, we change (1) to a lower order system by letting
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in[

N=n— ———.
1/_A_A'_‘(::ZAZ

(2)
Then (1) is transformed to

{iut —(—A+&A%)u = (Nu+Nu)/2, 3)
Nt VAT ERN = e (),
with |

u(0) =up, N(0) :no_i(_A_i_ngz),jnl.

The treatment for Nu is similar to Nu, we may assume that the nonlinear term in
the first equation of (3) is Nu. The global well-posedness of (1) in energy space
was obtained in [5] when d = 1,2,3. As pointed out in [1] that [? is the most im-
portant function space in mathematics and it is also important for Zakharov type
system since it measures the total electric energy in physics, to this motivation the
authors studied the local well-posedness with large data(l < d < 8), global well-
posedness(l < d < 5) and scattering for small initial data(4 < d < 8) of (3) in
L*(RY) x L*(R?), but for 1 < d < 3, scattering is not obtained in [1]. One of the
main difficulties of proving scattering for quantum Zakharov systemin in low di-
mensions is the quadratic nonlinearities. Recently, the scattering for 3D quantum
Zakharov system in L?(R?) x L?(R?) with small radial initial data was proved in [7]
using normal form transformation and radial improved Strichartz estimates. In this
note, we explain that the radial condition can be removed if we assume additional
angular regularity of degree one. The Sobolev space with one order angular regular-
ity Hg’é is defined in (5), the angular derivative D is defined in Subsection 1.1, the
Strichartz norm S and W are defined in (1). The main result is the following

Theorem 1.1 d = 3. Suppose that ||(uo,No) = &y > 0 which is

10 )2 )
small enough, then there exists a unique global solution (u,N) of (3) satisfy-
ing ||(u,N)||sxw < Cé&y and scatters in this space. Namely, there exists a solution

(ut,N*) e Hg’é (R3) x Hg’é (R3) to the linear system

{iut—(—A +e2A%)u=0, @

iN; +vV—A+€2A2N =0,
satisfying
le(r) —u(0) | 2+ IN(2) =N (0)[| 2+ | Do (1) = (1)) [| 2 + | Ds (N (£) =N (1)) | 2 — O,
ast — too,

Next we introduce some notations used in this note.
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1.1 Notation

For x € R”, write (x) := (14 |x|?)!/2. We use f or .Z f to denote the Fourier trans-
form of f. Write D := /—A = .Z ' |£|.Z and (D)* := .Z (1 + |E]?)/2.Z. Let
n :R3 — R be a smooth bump function supported in B,(0) and equal to 1 in

B1(0). For k € Z, let x¢(§) = n(£/2") —n(&/2") and x<i(§) = n(&/2"). The
Littlewood-Paley operators are defined by

P(E) = 2 (ENAE),  Pr(E) = xer(|ED(E).

Let Ag be the Laplace-Beltrami operator on the unit sphere S~! endowed with
standard metric g and measure do. Denote Dy = \/—Ags and Ag = /1 — Ag. For
1 <i,j<d, X;j=xd; —x;d; are rotational vector fields and for f € C%(RY),
As(f)(x) = Li<i jea X7 (f) (%)

LP(RY) denotes the usual Lebesgue space and .ZP(R*) = ZP(R* : p¢~ldp).
We follow the notations in [2] and write L§ = LE(S?™"), s = #5 (8! =
AG LY. ZJLE and £ 2 are Banach spaces defined by the norms || f]| o=
7o)z ll 2z and £ 1] o s = 1 f (PO rs | -

ForseR, 1 <p<eo, H ]s, denotes Banach space of elements u € .7’ (]Rd ) such that

-1( 2)s/24 € LP(RY) and H*(R") = H3(R"). The homogeneous Sobolev
space H' is defined by H*(R?) = {u € " (RY) : [|ul| s = [|[& |Sf(§)||L% <o}

Forse Rand1<p,g,r < oo, 'S (Rd) is the standard homogeneous Besov space

on R? with norm lll gy, ey (zkeZ 29K Peu(x) | )l/q B, , denotes the Besov
type space with norm

1/r
. R rsk r
H”HBEM)J = (Z 2 ||Pku||gppLg> :

keZ

ForO0<a <1, Hls,’g is the space with norm
1Al gse = 11AG .- 5)

I-'IZ‘%, By% o and B( o Are defined similarly. For simplicity, we write B,G =
B

soc _ psa
p26 dB Bp26

Let X be any Banach space of functions on R”, we define L/X to be the space on
R x R" with space-time norm ||”||L,‘1x = (J llull%dr) Va,

p’ denotes the conjugate of p € [1,0] given by %—F # =1
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1.2 Normal form transform

In this subsection, we use the normal form transform technique(which was first
used by Shatah[8] in quadratic Klein-Gordon equations) for the quantum Zakharov
system. Normal form transform method is one of the most powerful tools to exploit
nonlinear structures. Write

(D) =D*+¢’D*,  ay(D)=D\/1+€2D?,

and

or([E) =167 +eE1% m(&]) = [E]y/1+e &

Define S(1) = @ (P) .= F~1¢=01(5) Z 10 be the fourth order Schrodinger semi-
group and W (1) = !'@(P) := Z~1,i1®2(8) Z to be the wave semigroup.
For any u and v, define the low-high, high-low and high-high interactions by

(MV)LH = Z (ng_5u) (ka), (MV)HL = Z (Pku) (ng_Sv),
keZ k€Z

W)am =Y, (Pqu)(Pyv),
‘k|7k2|§4
ky,kr€EZ

then uv = (uv)ry + (uv)gr + (uv) g . To make a distinction with resonant and non-
resonant terms, we write

(uv)lL = Z (Pku)(ng_Sv), (uv)u = (\/’M)]L7
[k[<1

(uv)xp == HZ’ (Peu)(P<k—sv), (uv)rx = (vu)xi,
K>1

then
(w)ur = )i+ wv)xe,  (wv)en = (uv)pn + (wv)rx.

We use @x1, @rx, etc. to denote the bilinear symbol of operators uxy,urx, etc.,
Fw)a = [ pualE—miman, Fwx = [ i —m)iman. ©)

Symbols @x1, @rx, etc., can be expressed in terms of y;(€), i.e., Pxr = Yik>1 X (& —
N)X<k—s(n). Similarly as in [7], (3) are transformed to the following equivalent in-
tegral equations

u=S(t)up— Q1 (N,u)(t)+S(t)2;(N,u)(0) — i/OIS(t —5)(D|u)?,u)(s)ds

- i/[S(t —s).Q1(N,]Vu)(s)ds—i/lS(t—s)(Nu)HHJrLHHL(S)ds. )
0 0
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N =W (t)No — D3 (u,u)(t) + W (t) D3 (u,u)(0) — i./O.lW(t —5)(DQ3(Nu,u)

—D.Qg(u,Nu))ds—i/otW(t—s) @®)

D _
\/ﬁ (MM)HH+L1+1L(S)dSa

where Q;(j = 1,2,3) are bilinear multipliers

21(1.8) =7 [ gxus JE—matmyan,

(.0 =7 [ s 1§~ mitmian,

Q(f,9)=7" /(PXL+LX J(& —m)s(m)

S =) 4
BT+ E

in which ¢ := i (|§]) — @i(In]) — @2(/§ — 1) and Pe = w(|&]) + @ (|n]) —
;(|€ —n|) are resonance functions for the Schrodinger and wave component in
(3). After normal form transform, the transformed new system is:

(i&, + (D))(u+Q1 (N, I/l)) = (NM)HH+LH+1L —in(D|u|2,u) — 0 (N,Nu),
D

(id + @ (D))(N + DQ3(u,u)) = \/ﬁ

(uit) g +014+11 — ID€23 (Nu, u)+ l'D.Q3(u,NM)‘
©)

Remark 1.2 In proving scattering, the most difficult terms are the high-low inter-
action terms (Nu)xy, (uit)xr and (uit)xr. The Schrédinger component and wave
component have different propagation speed in these cases. These terms are highly
non-resonant which could be observed from the resonant functions ®¢ and ®. After
normal form transform, these quadratic terms are transformed into trilinear terms
and then have more freedom of space and time integrability which is crucial to close
the argument.

2 Angular Strichartz estimates and nonlinear estimates

In this section, we first recall the generalized spherically averaged Strichartz esti-
mate proved in [2].

Lemma 2.1 ([2]))d =3, k€ Z.
(1) Let ? < r < +oo, for any initial data ¢ € L2(R3), we have

3
n

ISP 2 512 S22 1012 M

(2) Let 4 < r < +oo, for any initial data ¢ € L2(R?), there holds
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_3
IWORD 13 4515 <2070 @)

To state the angular Strichartz estimate, we first give a definition on angular admis-
sible pair:

Definition 2.2 Assume that 2 < q,p < oo
(1)A pair (q, p) is called angular Schrodinger-admissible if

2 5 5
5+;<§0"(6],P):(°°72)' 3

(2)A pair (q, p) is called angular wave-admissible if

1 2

—+— <lor(g,p)=(=2). )
q p

Using Lemma 2.1 and interpolating with the classical Strichartz estimate, we obtain
the following:

Lemma 2.3 (Angular Strichartz estimates for the fourth order Schrodinger oper-
ator) Assume that 2 < q,G,p,p < o, (q,p),(G,P) are both angular Schrédinger-
admissible pairs and § > 2, then we have the homogeneous Strichartz estimate:

[S(Huoll 2,3 3 <luoll 2, 5)
B[I P2 x
17 (p.2).2
and the inhomogeneous Strichartz estimate
1
[ se-sreias| oyl s ©
0 LiB, o) LBl

where the implicit constants are independent of &€, % + % =1 and % + % =1.

Lemma 2.4 (Angular Strichartz estimates for the wave operator) Suppose that 2 <
4,4,p,p <, (q,p),(q,P) are angular wave-admissible pairs and § > 2, then there
holds the homogeneous Strichartz estimate

W @uoll 1,55 Slluoll 2, %
L?B({i;.zfz ‘

and the inhomogeneous Strichartz estimate

!
Jwe-sF@as| L SIFL ®
0 LBl 0, I8, 0,

where the implicit constants are independent of &€, % + % =1 and % + # =1.

For (g, p) # (e,2), we have slightly stronger Strichartz estimates:
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Corollary 2.5 For2 < q,G,p,p <, (q,p) # (=,2) and g > §'.
(a)Suppose that (q,p), (G, p) are Schrodinger admissible pairs, then

1S@uoll 2.5 3 Slluollrz, )
1Byt 2
t
S(t—s)F(s)ds 2,3 %NHFH Za3-3-3" (10)
0 LqBZ) er) 2 B(p’ 2),2

(b)Suppose that (q,p), (g, p) are wave admissible pairs, then

W ol 13 el an
(p,2+).2
3
[ We-9Fes| o SIFL g (12
° LiBG2ha i <p~’.2'>.zq

3 Nonlinear Estimates

For the variables u and N in the transformed system, we use the following angular
Strichartz norms with wider range as working spaces

1/4+8,1

(q(8).2+).0
—1/4-6,1
(q(=98),2+),0

ueS=LHy,NLIB NL2BY! (1)

NeW =L H . NI2B
where 0 < § < 1 is a fixed small enough number and ¢ is defined by ﬁ % + g.
For 0 < § < 1 small enough, there holds

D <q(d)<a<q(-8) <o,

then the norms defined in (1) are angular Strichartz admissible.

For the resonant terms containing (Nu)yp4rm+12 and (uit) gy 11412 in (7) and
(8), we apply the inhomogeneous generalized Strichartz estimates to estimate them.
We have

I [t 5)Fan 12 ()dsls

SNVl gor + 1N mnllyy o1 IVl 32500 @

and
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t D _
I W) s a0 (5)ds
D

S

~

_ D _
W(HU)HHHL}HSO{ + || W(MM)IL—FLI ||L:;/IB%~,%,%1 ) (3)

where (¢, 7) is the dual angular Schrédinger admissible pair and (¢, 7)) is the dual
angular wave admissible pair.

To deal with the other nonlinear terms, we follow [3] to use representation theory of
SO(3). Let 1 be Haar measure of SO(3) and write L} = L7(SO(3),1t). Then

1Al zprg ~ NFADIpppa, V1< pig <o

Lemma 3.1 ([10]) For any 1 < g < oo,

1 gp ey ~ W1l zprg +§,”Xi7jf||$l§'ﬂé7

where Xl'J == xiaj 7)6]'(9,'.

Let T, be a bilinear operator on R” defined as

Tulf.0)) = [, m(&mFERMeE M dEan.

We recall a bilinear multiplier estimate proved in [3].
Lemma 3.2 ([3]) Let 1 < p,p1,pr <eoand1/p=1/p;+1/ps. Assume m(€,1) =
h(|&|,|n|) for some function h, m is bounded and satisfies for all o, 3
|0 0Fm(E,m)| < Caple[ 1 n|7P, &m0,
Then for g > 2,

TPt Pus) g g < CIAL g 8122 1

for any ki, ky € Z with an uniform C.

With Lemma 3.1 and applying Lemma 3.2 for every bilinear dyadic piece, we have
the following two lemmas following the proof of [4] and [7] with slightly modifica-
tions:

Lemma 3.3 (Bilinear Estimates) Let 8 be a small number.
(1)For any N and u, there holds
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Nu)rn SNl o p-1/a-5, u 5
| (Nu) ”LJ < HLZB 1/4) 1)1 [ HLZBZ/Z;A) )
Nu)gn 01 S Nl pp-1/a-51 |lu 5
[[(Nu) “L Sl HLZB 1/4) 1),6” ”LZB(lq/(At;r)Zl) 7
N SN 24
I M)IL”Lle%f%%J Sl ”L,ZB( 1/45)3l)_oHM||L°"H”“LZB(I/?JS5)I.07

where in the third estimate 0 < 0 <1,
(2)For any u, there holds

Qz\"
N\v—

Dl S lu 5, u 5,
|——= 1+ 2D (uit) ”L}Hzﬁ [ HLZBE/(“ )]+),c|| HLZBE/(“;);) ;
|——— (i) i1l , 3.1 3, Slul’ o

1+e¢ 2D (g2 ! LPH OBl 50 6

(7 2),0

. . . 1_1_61_1,6_35
where in the last inequality 0 < 6 < 1, i iTit 5
Sketch of the Proof. We briefly sketch the proof of the first estimate. By dyadic

decomposition,

H(Nu LH” ou NZH Z A PklNsz )||iﬂszé+

k2 k1<k2 -5
SYC Y 1PaNPoull g, )%
ky ky<ko—5

When g > 2, ji’j]l is an algebra. Using the bilinear estimate, i.e., Lemma 3.2, we
have

|(Vu)alfgr SEC X NP a0 1 [Pl o) 0 )
20 ky ky<kp—5
=Y L ORI o 29 Bl oy
ky ky<kp—5

< ||N||27|/4 5.1 HMHEI/AHB,I )
(fi( 8),2+),0 (4(8),2+).0

which implies the first estimate by using Holder’s inequality in time. The other terms
can be estimated similarly, we skip the details.
For the boundary terms, applying homogeneous Strichartz estimates, we obtain

Lemma 3.4 (Boundary terms I) For any Ny and uy,
1)1 (%) (O)ls 5 121 (Foyt0)l01 S [Nl ol

W (#)D&23 (1, u)(0) lw < |D&23 (w0, u0) | o1 S HuoHZ,g.l.

Then for any N and u, there holds
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1920 (N ) g1 <IN ey [l 1D2s (1 0)l] 1 < Il

LPHY LeH) LrHYL LPHY LrHYL
We need the Coifman-Meyer bilinear multiplier estimates to deal with the other

nonlinear terms

Lemma 3.5 Assume m is bounded and satisfying the following estimates:
[90g 0 m(&,m)| < Capls|™“n P!, va,p.
Let 1 < p,q,r<oo, 1/r=1/p+1/q, then for any ki, ks € Z, we have

1 Ton(Pry f Pro@) | < CIIF (v 18] s

Since X; ; commutes with the radial Fourier multiplier operator and X;;(fg) =
gXiif + fXijg, applying X;; to the multiplier on dyadic piece and then estimating
with Lemma 3.5 similarly as in [7], we have the following bilinear and trilinear
estimates:

Lemma 3.6 (Boundary terms II) For any N and u, there holds

||91(N,M)||L231/4+51 SN g el o

1D€3 (u u) | o1 [|u]

*1/4 s < HMHLZB
—8).2),0

00 770,1
LZB L HZAo',

where the implicit constant is independent of €.

Sketch of the Proof. For the first estimate, using dyadic decomposition, Sobolev
embedding and Lemma 3.1

121 (N, ) [51ja051 < IDRIN, W7, 01
B2

<Y lAsk, D>_ Y. D(D)(P,N,Pyu)|}
ko k1 <ko—5

2
<Z< Yy, (%) 1||szD<D>Ql(szN»Pk.u)llu)

ky \k1<ky—5

2
+Z< )y Z<2"2>-l|szD<D>91(xl-,.,-szfv,PkmLz>

ky \ki<k,—51i,j

2
+Z< Yy Z<2k2>1||szD<D>‘Ql(Pk2N7Xi~,ij1u)L2> -

ky \ki<k,—51i,j

In which D(D)&; (P, N, P, u) is a bilinear multiplier with symbol

(Em) = 1S +nl(& +m)0 (E)xw (M)
o1 (1§ +n) — o (|n]) — @(|5])
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One can check that m; (&, 1) satisfies the conditions in the Coifman-Meyer multi-
plier estimate, i.e., Lemma 3.5. Then

121N, w)[G1aisr SXC Y (27 APV 2| APy ull-)?
((5) 2).0 ky ki<kp—5
< |INIP o lluel2
Sl ||H§7;\\ ”32;;’

which implies the first estimate. For the boundary term containing 23, we skip the
details and refer to [7] for the detailed proof.
For the cubic terms, we have

Lemma 3.7 (Trilinear estimates) For any N and u, we get

t
II/ S(t —5)(D|ul*,u) (s)ds]|s < || (D]ul*,u Wllper < IIMHL2301 IIMHLwHOI
I [ st-9)2 (8. M) )dsls < 1 (¥, Fllzgps 5 Dl V1. 0
5, i
II/O W (& —5) (D3 (Nu,u) = D3 (u, Nu))dsllw S [|DLs(Nu,u)]| 1y o1 S IIMIIngol IVl g1

Sketch of the Proof. We only sketch the main idea of the proof for the first
trilinear estimate. Using dyadic decomposition and Bernstein’s inequality(see for
instance [9]),

122 (Dluf?, u) I\ZOINZII Y, AsPu@(PuDlul, Py u)l7
2,0

ky ki <ky—5
2k 1 2 2
SE2RI F AR @B Dl Py
15k —

Recall that the resonant function for the Schrodinger component is

= o (|¢]) — o (|n]) — @(18 —nl).

In the support of the symbol of €5, for the low frequency part(|§]| < 1,[n| < [€] ~

|De| ~ |E].
While for the high frequency part (|€] > 1,|n| < €] ~ |€ — 1)),
|Pe| ~ [

Therefore it can absorb four derivatives for the high frequency in terms of Coifman-
Meyer multiplier estimate(Lemma 3.5) which helps to close the argument. In detail,

1Q2(DJul?, )H2 <Z22k2 POREDY IIAész<D>3-(22(Pk2DIM\2,Pk1u)HLg)2
ki <kr—5
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Noticing that (D)3Q, (P, D|u|?, P, u) is a bilinear multiplier with symbol

(€+ )18 |2k, (§) 2k, ()
(@1(1&+n1) — (1)) — @ (&) /T+eEP

which satisfies the conditions in Lemma 3.5. Therefore

my(G,1M) =

2
122Dl w700 S Y (22)02% ) IIsz\ulzlngllPklullLe
20k, ki <kp—5

2
+Z<2k2>622k2< Z ZHXI'JPIQWZHL%|Pk1u||L6>

ky k1<ky—=5i,j

2
ko \ —6~2k 2
+).(2%)™2 2( Y YRl Lg||Xi.,ij1M||L6>
k> k1<ky—51,j

4 2
< IIMHBg,l IIMIIHzo.l,
Ked Ned

which yields the first estimate as desired. The other terms can be estimated similarly.
For instance, for the third estimate containing 23, one only need to notice that the
resonant function for the wave component is

®: = (|€]) + @ (Inl) — @1 (1€ — 7)),

and |®;| behaves like (£)3|&|(when |n| < |€|) which can again absorb four deriva-
tives in high frequency. We skip the details of proof.

Remark 3.8 When € = 0, namely for the original Zakharov system, the resonant
function for the Schrodinger component behaves like

|Pe| ~ (§)IE],

which can only absorb two derivatives for the high frequency. This is one of the main
reason that quantum Zakharov system has much better properties than the original
Zakharov system.

4 Scattering in L?
For any small initial data (uo,Np) € Hg’; (R3) x Hg’; (R3), we define the operators
_ _ 3
B (09) =800 — 24 (%)) 4SO (B, 0) i [ 806~ 5) 22Dl )(5)ds

i [ (=)0 (%, Nu)s)s i [ $(6 ) N 10(5)ds,
0 0
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and
‘I’]%O(M,N) =W (t)Ny — D23 (u,u)(t) — i/O[W(t —5) (D3 (Nu,u) — DQ3(u,Nu))ds
WD 01)(0) =i [ Wit =) 2 11 5)ds.

Write ¥ : (u,N) — (¥ ‘P2 ) and choose the resolution space as

2 ={(,N) : [l(u,N)|lx < e},

with the norm ||(u,N)||x = ||u||ls + || N|lw, @ is a small number to be determined.
Applying the Strichartz and nonlinear estimates, for any (#,N) € &, we have

1
15 (0 N)lls S Hluoll o +1INT 01 Nl 0t + INol] o1 lleoll o

+||N||L°°H0’l ||u||LzB()1 +HM|| 0,1 +||MHL2301 ||N||

L2BOI ”M”L‘X’H

LPHY)
+|IN _ u
Mg es  Nlagrnss
and
2,V S Nl -+ 20 + ol 2
+ ||u||LzBm IIMIILmHm + ””HLzBOl IINIILmHm + ||"‘HLzBl/4 : +>6”“HLZB§/Z‘$‘§+>,G
Then

1 2
W, N) |lx = ([ (2, N) s + [ Fg, (0, N) [l w
2 2 3
< llwoll o0 4 1IN0l o1 + (lluoll o + [[Noll o )™ 4[| (e, N) x4 (e, N) -
2,0 2,0 2,0 2,0

If the initial data is sufficiently small, namely, Bo = [luol| 01 + [[No|| ;01 < 1, we
2,0 2,0

choose o = CPy, then ¥ : 2 — 2. Similarly ¥ is a contraction mapping on Z.

Therefore there exists a unique solution on & with global space-time bound. By

the standard techniques, we obtain that the solution (u(¢),N(z)) to (3) scatters in
0,1 0,1

Hz, 5 X Hzﬂ s
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