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The algebraic invariants1 associated to the group actions on the Cantor set provide
an interesting connection between the fields of dynamical systems and group the-
ory. For instance, Giordano, Putnam and Skau have shown in [29] that the dimension
group (see [24] for an introduction about dimension groups) of a minimal Z-action
on the Cantor set completely determines its strong orbit equivalence class. Further-
more, the topological full group of such a system, which is known from Juschenko
and Monod [38] to be amenable, determines its flip-conjugacy class (see [6] and
[30] for more details). On the other hand, the amenability of the topological full
groups of minimal Z-actions together with their properties shown in [41] by Matui
make them the first known examples of infinite groups which are at the same time
amenable, simple and finitely generated. Recently, another algebraic invariant, the
group of automorphisms of actions on the Cantor set, has caught the eye of several
researchers working in the field [13, 15, 16, 17, 14, 19, 20]. In [5], Boyle, Lind and
Rudolph focused their attention on the group of automorphisms of subshifts of finite
type, showing that these groups are always countable and residually finite. At the
same time, they gave an example of a minimal Z-action on the Cantor set whose
group of automorphisms contains Q, which implies that the automorphism group of
a minimal action may be a non-residually finite group (recall that the Z-subshifts
of finite type are not minimal). This leads to the natural question about the relation
between the algebraic properties of the group of automorphisms and the dynamics
of the system. Indeed, the residually finite property of the group of automorphisms
of the subshifts of finite type is a consequence of the existence of periodic points.
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1 By an algebraic invariant of the dynamical system (X ,T,G) we understand any algebraic struc-
ture associated to the system which determines some dynamical properties of (X ,T,G) or whose
properties depend on the dynamics of (X ,T,G).
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1 Minimal Cantor systems

By a dynamical system we mean a continuous action T : G×X → X of a countable
group G on a compact metric space X (phase space). We denote this as (X ,T,G),
and for every g ∈ G, we call T g : X → X the homeomorphism on X induced by the
action of g on X . The dynamical system is free or aperiodic if T g(x) = x implies
g = 1G (the neutral element in G) for any x ∈ X . The orbit of x ∈ X is the set
OT (x)= {T g(x) : x∈G}, and we say that the system (X ,T,G) is minimal if for every
x ∈ X its orbit is dense in X . Minimality is also equivalent to the non-existence of
non-trivial sub-dynamical systems of (X ,T,G), i.e, the system is minimal if and only
if the unique non-empty closed T -invariant set Y ⊆ X is Y = X . As a consequence
of Zorn’s lemma, we get that every dynamical system (X ,T,G) has a minimal sub-
dynamical system (see for example [1, 3]). It is clear that, if (X ,T,G) is aperiodic,
the minimal sub-dynamical systems are also aperiodic.

A particular class of dynamical systems are the Cantor systems, which are de-
fined as the systems (X ,T,G) where X is a Cantor set. An example of a Can-
tor system is the full G-shift on the finite alphabet Σ . More precisely, given Σ G,
the set of all functions x : G → Σ , the shift action σ of G on Σ G is defined as
σgx(h) = x(g−1h), for every g,h ∈ G and x ∈ Σ G. If we endow Σ with the discrete
topology and Σ G with the product topology, the space Σ G becomes a Cantor set and
every σg is a homeomorphism. Thus, (Σ G,σ ,G) is a Cantor dynamical system.

The full G-shift is neither aperiodic nor minimal. However, in [37], Hjorth and
Molberg show that for every countable group G there exists an aperiodic Cantor sys-
tem (X ,T,G). Moreover, in [4] and [26], the authors show that this aperiodic Cantor
system can be chosen as an aperiodic G-subshift, i.e., an aperiodic sub-dynamical
system of a full G-shift.

2 Algebraic properties of the topological full group of Toeplitz
subshifts

The full group of the dynamical system (X ,T,G) is the subgroup [G] of the group
of homeomorphisms f on X such that for every x ∈ X there exists g ∈ G such that
f (x) = T g(x). This is the topological version of the full group introduced by Dye
[23] in the context of measure-theoretic dynamical systems. It was shown by Me-
dynets in [43] that the full group of a Cantor aperiodic system is a complete invariant
for topological orbit equivalence (see [27, 28, 29, 31] for the notion and results about
topological orbit equivalence).

The topological full group of the dynamical system (X ,T,G) is the subgroup
[[G]] of [G] of all the homeomorphisms f on X such that for every x ∈ X there exist
a neighbourhood U of x and g ∈ G such that f |U = T g (see [30, 33] for definitions
and results). It is straightforward to check that, when X is a connected space, [[G]]
is isomorphic to G. Conversely, when X is a Cantor set, the topological full group
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depends not only on the group G, but on the dynamics of the system. Indeed, from
[43], it is possible to deduce that, for aperiodic Cantor systems, the topological full
group is a complete invariant for continuous orbit equivalence (see [9] and [40] for
definitions and results about continuous orbit equivalence).

From a group theoretical point of view, Jushenko and Monod have shown in [38]
that the topological full group of the minimal Cantor system (X ,T,Z) is amenable
(see for example [7] for definitions and results about amenability of groups and
[34, 35, 41, 42] for more algebraic properties of the topological full group). On the
other hand, Elek and Monod exhibited in [25] an example of an aperiodic minimal
Cantor system given by a Z2-action whose topological full group is not amenable.
Thus the algebraic properties of the topological full groups of minimal Cantor sys-
tems (X ,T,G), when the group G is not Z, still remain unclear. In joint work with
Medynets and Petite, we are investigating some of these algebraic properties for the
class of the Toeplitz G-subshifts.

2.1 Toeplitz G-subshifts

Let Σ be a finite alphabet. An element x ∈ Σ G is Toeplitz if for every g ∈ G there
exists a finite index subgroup Γ of G such that x(g) = x(γg), for every γ ∈Γ . A sub-
shift X ⊆ Σ G is a Toeplitz G-subshift if there exists a Toeplitz element x ∈ X such
that X = Oσ (x); see [21] for a survey on Toeplitz Z-subshifts and [8, 11, 12, 39]
for results about Toeplitz G-subshifts. It is not difficult to show that the Toeplitz
G-subshifts are Cantor minimal systems and that G admits an aperiodic Toeplitz G-
subshift if and only if G is residually finite [12]. The aperiodic Toeplitz G-subshifts
are characterized as the minimal almost one-to-one symbolic extensions of the G-
odometers [12], which correspond to the minimal aperiodic equicontinuous actions
of G on the Cantor set [9]. Furthermore, the G-odometers are among the only min-
imal aperiodic Cantor systems with a topological full group that can be described
in an explicit way (see [18] for Z-odometers and [9] for G-odometers when G is
residually finite). This description allows to deduce that the topological full group
of a G-odometer is amenable if and only if G is amenable (see [9]).

The existence of an almost one-to-one factor map from a Toeplitz G-subshift to a
G-odometer makes it possible to define for those systems nice nested sequences of
Kakutani–Rohlin partitions (see [22, 36] for definitions and results about Kakutani–
Rohlin partitions for Z-actions and [12, 11, 32] for Toeplitz G-subshifts), which
provides a useful tool to study the properties of the topological full group of these
subshifts in order to find examples of Toeplitz Z2-subshifts whose topological full
groups are not amenable.

We are still working on the following general question: Which are the properties
on a Toeplitz G-subshift that ensure that its topological full group is amenable?
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3 Algebraic properties of the group of automorphisms of a group
action on the Cantor set

Let (X ,T,G) be a minimal aperiodic Cantor system. The normalizer group of
(X ,T,G), denoted Norm(X ,T,G), is defined as the subgroup of all the homeo-
morphisms h : X → X such that there exists an isomorphism αh : G → G such
that h ◦ T g = T αh(g) ◦ h, for every g ∈ G. The aperiodicity of the action implies
the uniqueness of αh for any element h ∈ Norm(X ,T,G). Thus we can define the
automorphism group of (X ,T,G) as

Aut(X ,T,G) = {h ∈ Norm(X ,T,G) : αh = id}.

It is immediate that Aut(X ,T,G) is a normal subgroup of Norm(X ,T,G). For the
case G = Z, the quotient of the normalizer group by the group of automorphisms is
either trivial or isomorphic to Z/2Z. Important progress has been made in the study
of the group of automorphisms of minimal Z-subshifts, establishing a connection
between the complexity of the subshifts and the algebraic properties of the group of
automorphisms; see [2, 15, 16, 17, 19].

In [10], we obtained results concerning the realization of groups as subgroups
of the normalizer and the automorphism group of minimal aperiodic actions on the
Cantor set as follows.

• Every countable group is the subgroup of the normalizer of some minimal aperi-
odic action of a countable Abelian free group on the Cantor set.

• Every residually finite group Γ can be realized as the subgroup of the automor-
phism group of a minimal Z-action on the Cantor set [10, Prop. 7]. A key tool for
the proof of this result is the characterization of residually finite groups as those
groups G for which every full G-shift has a dense subset of points with finite
orbit [7, Thm. 2.7.1].

• For any countable group G, the group of automorphisms of a minimal aperiodic
G-action on the Cantor set is a subgroup of the group of automorphisms of a
minimal Z-action on the Cantor set.
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