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Abstract The Rayleigh Taylor Instability is a fluid instability that develops when
fluids of different densities are accelerated against their density gradient. Its appli-
cations include inertial confinement fusion, supernovae explosion, fossil fuel ex-
traction and nano fabrication. We study Rayleigh Taylor instability developing at an
interface with a spatially periodic perturbation under a time varying acceleration us-
ing group theoretic methods. For the first time, to our knowledge, both regular and
singular nonlinear solutions are found, which correspond to the structure of bub-
bles and spikes emerging at the interface. We find that the dynamics of bubbles is
regular, and the dynamics of spikes is singular in an asymptotic time-regime. The
parameters affecting the behaviour of both bubble and spikes are discussed, includ-
ing the inter-facial shear, which is shown to have a profound effect. The results set
key theoretical benchmarks for future analysis.

1 Introduction

1.1 Rayleigh Taylor Instability

The problem of Rayleigh Taylor instability was first systematically studied in
1883[12] by Lord Rayleigh, who proposed an experiment in which a dense fluid
(eg: water) is balanced on top of a less dense fluid (eg: oil). The system, if perfectly
balanced, would remain at rest - with the dense fluid on top being unable to penetrate
the lighter fluid. However, any perturbation or deviation away from this equilibrium
state causes the system to rapidly accelerate away from the equilibrium state. Later
experiments by Taylor [7] would confirm the unstable nature of such a system and
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provide geometric insight about the problem.

In the most general of terms, the Rayleigh Taylor Instability can be defined to be
a system of two fluids of different densities undergoing a prolonged acceleration
normal to the interface between the fluids. In a system with this configuration, the
less dense fluid ”bubbles” up and penetrates the denser fluid, which itself penetrates
the lighter fluid as ”spikes”. Both ”bubble” and ”spike” structures are observed to
have a finger-like structure that is paraboloidal in nature for early time, but may
evolve into more irregular structures in the late-time ’mixing’ regime.

In a complete description of the system, shearing forces that emerge at the inter-
face are responsible for deformations of these bubble and spike structures. Whilst
at very small scales, this vortical behaviour can be described independently, as has
been done in research of Kelvin Helmholtz instabilities, for the Rayleigh Taylor in-
stability, these structures are tiny, and shear is best described as a global property of
the system that can affect its growth and other behaviour.

Rayleigh Taylor behaviours are observed in a broad range of circumstances and
scales. Examples in nature include supernovae[4], galactic evolution [4], and ocean
dynamics [1]. Industrial examples include laser micromachining [13] (including
laser ablation [5]), inertial confinement fusion [9], optical telecommunications [11]
and aeronautics [6]. With such a large range of fundamental processes being driven
by Rayleigh Taylor dynamics, it is vital that effective theoretical benchmarks are
set.

2 Theoretical Approach

2.1 Governing Equations

2.1.1 Euler Lagrange Equations

The analytic description of the system begins with the Euler equations for incom-
pressible fluids of uniform density:

Du
Dt

=−∇ω +g (1)

∇ ·u = 0 (2)

By considering an infinitesimal volume dV of fluid, the conservation of mass,
momentum and energy lead to the following conservation equations:
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∂

∂xi
(ρvi) =

∂ρ

∂ t
(3)

∂ρvi

∂ t
+

3

∑
j=1

∂ρviv j

∂xi
+

∂P
∂xi

= 0 (4)

∂E
∂ t

+
∂ (E +P)vi

∂xi
= 0 (5)

where in these equations, ρ is the density, p is the momentum, vi are the com-
ponents of the velocity field, xi are the spatial coordinates of the system and E and
P are the energy and pressure respectively. The energy can also be expressed as
E = ρ(e+v2/2) for specific internal energy e.

2.2 Interface Conditions

In order to separate the dynamics of both the bulk and the interface, we introduce a
scalar function θ(ρ,v,P,E) which has derivatives of at least first order (i.e. ∇θ and
θ̇ exist), with θ being 0 at the interface of the two fluids. Then the denser fluid is
located in the region θ > 0 and the less dense fluid fills the region θ < 0.

Since these two fluids are perfectly separated by this boundary of θ = 0, we may
express our total domain as (ρ,v,P,E) = (ρ,v,P,E)hH(θ) + (ρ,v,P,E)lH(−θ).
Substituting into the conservation equations, we obtain the following conditions at
the interface:

[j ·n] = 0 [(P+
(j ·n)2

ρ
)n] = 0

[(j ·n)( (j · τ)
ρ

)τ] = 0 [(j ·n)(W +
(j)2

2ρ2 )] = 0

n =
∇θ

|∇θ |
n · τ = 0

(6)

where the square brackets [...] denote the ”jump” of the function across the in-
terface - essentially the limit of the derivative with respect to θ . The mass flux is
expressed as j.

In the case in which there is no mass flux across the interface ( j ·n|
θ=0± = 0), these

boundary conditions at the interface become:

[v ·n] = 0, [P] = 0, [v · τ] = arbitrary, [W ] = arbitrary (7)

and at infinity:



4 Kurt Williams, Desmond L. Hill, Snezhana I. Abarzhi

lim
z→∞

vh = 0, lim
z→−∞

vl = 0 (8)

Whilst there exist two natural time scales for Rayleigh Taylor systems with time-
varying acceleration [10], we will focus on the the timescale of acceleration-driven
dynamics. The two timescales are τg = (kG)−1/(a+2) and τ0 = 1/(k|v0|) with |v0|
some initial growth rate for the system. Furthermore, there is a unique length scale
1/k imposed by the wave vector.

2.3 Large Scale Dynamics

Any vector field can be expressed as the sum of the gradient a scalar potential plus
the curl of a vector potential field. In this way, we may express our vector field as:

v = ∇Φ +∇×φ (9)

The large scale dynamics are assumed to be irrotational, since no discontinu-
ities or circulations occur. The small-scale dynamics are rotational, but by Kelvin’s
Circulation Theorem the large scale dynamics are irrotational in the bulk [14]. We
hence set ∇×φ = 0. This means that the velocity field v can be expressed as ∇Φ .

By substituting this expression for v into the conservation equations, we obtain the
following:

∆Φ = 0 (10)

ρ(
∂Φ

∂ t
+

∇Φ2

2
)+P = 0 (11)

Now substituting the expression for v into 7, we obtain a system of equations to
solve:

ρh(∇Φh ·n+
θ̇

|∇θ |
) = ρl(∇Φl ·n+

θ̇

|∇θ |
) = 0 (12)

∇Φh · τ−∇Φl · τ = arbitrary (13)

ρh(
∂Φh

∂ t
+
|∇Φh|2

2
+(g(t)+

∂v
∂ z

)z) = ρl(
∂Φl

∂ t
+
|∇Φl |2

2
+(g(t)+

∂v
∂ z

)z) (14)

where g(t) = Gta, a power-law function of time. In the frame of reference that
moves with the bubble tip, the boundary conditions are instead expressed:

∇Φh|z→∞ = (0,0,−v(t)),∇Φl |z→−∞ = (0,0,−v(t)), (15)
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2.4 Group Theory

In order to capture the highly-symmetric nature of our solution, we appeal to group
theory. The interface between the two fluids is initially flat, or rather very close to
flat and so is essentially R2, a group of Lie Type, which is to say that R2 under some
set of transformations, can be considered to be both a group and a manifold. The
elements of the irreducible representations of this group will inform the structure of
Fourier series over the group. Since we are seeking a solution which has symme-
tries over the entire space, we infer that the group operations in question must be
symmetry transforms on R2. There are seventeen groups of invariants under these
transformations, but by imposing the condition that our structures must have inver-
sions along the interfacial plane, and must be repeating, we need only consider the
two-dimensional groups p2mm, p4mm, p6mm, p2 and cmm for three dimensional
flows; and the one-dimensional group p1m for two-dimensional flows. These groups
are referred to using the international notation [2]. In this notation, m’s denote the
number of reflective or ”mirroring” symmetries a cell has, p’s indicate primitive
cells - which have natural translational symmetries, c’s denote face-centred cells
and free numbers indicate the rotational symmetry of each cell.

Figure S3
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Fig. 1 A selection of the seventeen unique wallpaper groups.

We will be examining the symmetry group p6mm, which has six rotational sym-
metries, 2 reflective symmetries and three directions of equal magnitude transla-
tional symmetry, the third of these being the direct sum of the first two. The naive
treatment of such a structure would be to construct vectors ai along each edge and
express our solution in terms of these. However, to actually express our solution, we
need to map these ”lattice vectors” into reciprocal space - a non-euclidean manifold
in which the metric for distances between two points is:

d(x,y) = 1/dE(x,y), (16)

where dE is the Euclidean metric. Each of the vectors k j in inverse space obeys
the relationship ai ·k j = 2π , for i, j ∈ 1,2 and k3 = k1 +k2. Since the lattice vec-
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tors are (2π)ai = {(1,0),(−0.5,
√

3/2),(−0.5,−
√

3/2)}, our reciprocal vectors are
(
√

3λ/4π)k j = {(
√

3/2,1/2),(0,1),
(
√

3/2,−1/2)}. There is an interesting geometric relation between the lattice vec-
tors and the reciprocal lattice vectors in euclidean space - the reciprocal vectors form
a basis for the centre of each cell (figure 2). As such, these vectors are the basis for
a Fourier series of structures along the interface.

a1

a2

a3

k1

k2

k3

Fig. 2 The geometric relationship between the lattice vectors ai (dashed) and the reciprocal vectors
k j (solid)

So then, since we require the maxima of our Fourier series along the interface to
be at the centre of the hexagonal cells, we expect our Fourier series for the velocity
potential to be of the form:

Φ ∼
3

∑
j=1

cos(αk j · r)

Then summing over all the modes of harmonics and the boundary conditions for the
heavy and light fluids, we obtain in a single step:

Φh(r,z, t) =
∞

∑
m=0

Φm(t)(z+ e
−mkz
3mk

3

∑
j=1

cos(mk j · r))+ fh (17)

Φl(r,z, t) =
∞

∑
m=0

Φ̂m(t)(−z+ e
mkz
3mk

3

∑
j=1

cos(mk j · r))+ fl (18)

where r = (x,y) is the position along the interface, Φm and Φ̂m are the Fourier am-
plitudes, with m ∈ Z. It is worth noting that |ai|= λ , k = |ki|= 4π/(λ

√
3).
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We are interested in the motion at the tips of the bubbles and spikes, so we are
able to Taylor expand the scalar function θ(z) = z− z∗(x,y, t). Knowing that the
structures are symmetric about the centre of each ”symmetry cell”, the expansion
is:

z∗(x,y, t) =
∞

∑
N=1

ζN(t)r 2N . (19)

To the first order (N=1), the tip expansion is z∗ = ζ (x2 + y2).

2.5 The Moments Expansion

Since the equation is expanded in terms of harmonics of standing waves (17), it
would be natural to truncate the series to a few terms and analyse those. However,
much of the behaviour of the system is governed by the interplay between these har-
monics. In order to preserve these harmonics in our equations we introduce weighted
sums over all the harmonics known as ”moments”:

Mn =
∞

∑
m=0

Φm(t)knmn (20)

M̂n =
∞

∑
m=0

Φ̂m(t)knmn (21)

2.6 The Dynamical System

Finally, having attained local expressions for the potential field and the interface, we
substitute into 12-2.14 and obtain the following system of equations:

(1+A)(ζ̇ −2ζ M1−
M2

4
) = (1−A)(ζ̇ −2ζ M̂1 +

M̂2

4
) = 0 (22)

(1+A)(
Ṁ1

4
+ζ Ṁ0−

M2
1

8
+ζ g) = (1−A)(

˙̂M1

4
+ζ

˙̂M0−
M̂2

1
8

+ζ g) (23)

M1− M̂1 = arbitrary, M0 =−M̂0 =−v (24)

Where A = (ρh−ρl)/(ρh +ρl), the Atwood number and g = g(t) = Gta.

2.7 Early Time Solutions

For the early time solutions, only the first harmonics are retained in the expressions,
yielding:
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Mi =−M̂i =−kiv, v =
4
k2 ζ̇

(1+A)(ζ̈ −ζ Gta) = (1−A)(−ζ̈ −ζ Gta)

(25)

This system of equations has general solution:

ζ (t) = c1

√
t
τ

I 1
2s
(
√

AG
( t

τ
)s

s
)+ c2

√
t
τ

I− 1
2s
(
√

AG
( t

τ
)s

s
) (26)

With τ = τg being the characteristic timescale of the time-dependent acceleration
force. The case a = 0 yields the classic result:

ζ (t) = c1 exp(
√

AG
t
τ
)+ c2 exp(

√
AG

t
τ
) (27)

2.8 Nonlinear Dynamics

In general the dynamical system is not solvable. We can, however, generate an
asymptotic solution in the regime of t → ∞. In such a regime, we assume that each
of the modes of oscillation grow at the same rate, since otherwise our problem is
dominated by a single mode which could be analysed in exactly the same way as
our linear, early time dynamics. We also assume that the rate of growth goes as
some power law expansion of time, which is to say that the growth of these modes
is governed by the external acceleration, which has power-law dependence on time.
We presume that asymptotically:

ζ ∼ ta, (M,M̂,Φ ,Φ̂)∼ (m, m̂,φ , φ̂)tβ

In order to ensure our solution resolves issues of closure, and captures the inter-
action between harmonic modes, we expand our moments to the second mode of
oscillation:

Mn(t) = (Φ1(t)+2n
Φ2(t))kn, M̂n(t) = (Φ̂1(t)+2n

Φ̂2(t))kn (28)

Which yields the following:

ζ1 =−
m2

8m1
ζ1 =−

m̂2

8m̂1
(29)

m1 =
2m0k

3−8p
m̂1 =

2m̂0

3+8p
(30)

m2 = 3km1−2k2m0 m̂2 = 3km̂1−2k2m̂0 (31)

p =−ζ

k
(32)

Substituting these into equation 23, we obtain:
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(1+A)(
bm1

4
+ζ1bm0−

m2
1

8
t1+b−ζ1Gt1+a−b)

= (1−A)(
bm̂1

4
−ζ1bm̂0−

m̂2
1

8
t1+b−ζ1Gt1+a−b)

(33)

In determining solutions to this equation, we invoke dominant balance and find
three potential balances:

a <−2,b =−1 a =−2,b =−1 −2 < a,b =
a
2

If a is sufficiently small (a <−2), then the external acceleration will have negligible
effect, and the motion will essentially be of Richtmyer Meshkov type. The second
case will be a threshold point at which the dynamics will be both of Rayleigh Taylor
and Richtmyer Meshkov type. The Rayleigh Taylor dynamics are given in the third
case. In letting b = a/2 and −2 < a < 0, we solve for the velocity:

v(t) =−
√

G(t/τ)a

k
(64p2−9)

√
2Ap

48p+A(64p2 +9)
(34)

=− 1
τk

(
t
τ
)a/2(64p2−9)

√
2Ap

48p+A(64p2 +9)
(35)

The structure with the fastest velocity for a given Atwood number is known as the
Atwood structure. Setting the time derivative of v(t) to be zero yields the follow-
ing condition for the curvature (p = p∗) and velocity (v(t) = v∗(t)) of an Atwood
structure:

p∗4 +
1
A

p∗3 +
9

32
p∗2− (

3
16

)3 = 0

=⇒ v∗(t) =− 1
τk

(
t
τ
)a/2(8p∗)

3
2

(36)

We also seek to account for the vortical structures that emerge strictly at the in-
terface. Although they do not cause global circulation, they do provide a means by
which the two fluids can move or ”shear” past each other. We thus introduce a global
parameter to quantitatively measure this interfacial shearing:

Γ (ζ , t) = M1(t)− M̂1(t) =
12k

64p2−9
v(t) (37)

In all of our equations, the curvature (ζ ) and wavelength (k) are natural parameters
of the system. Since the wavelength is fixed by the initial configuration of our sys-
tem it is natural to assume, as Garabedian[8] did, that solutions to the problem of
Rayleigh Taylor instability form a one-parameter family of solutions, and that the
dynamics are single-scale in nature. So then, our full description of the system is:
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v(t) =− 1
τk

(
t
τ
)a/2(64p2−9)

√
2Ap

48p+A(64p2 +9)

Γ (ζ , t) =
12k

64p2−9
v(t)

(38)

3 Bubble Dynamics

Bubbles are formed when the lighter fluid penetrates into the heavy fluid. As such,
they are concave downwards in z and have negative curvature (ζ < 0, p > 0). In the
asymptotic limit, the velocity function is shown in figure 3.

A=1

A=2/3

A=1/3

0.2 0.4 0.6 0.8 1.0

0.2

0.4

0.6

0.8

1.0

v√
g/k

ζ

ζcrit

Fig. 3 The velocity (v) of a rising bubble scaled by growth rate (
√

g/k, g = Gta) as a function of
its curvature (ζ ).

We clearly observe that there is a one-parameter family of solutions. For any
given Atwood number, there is a broad range of possible curvatures, each with its
own velocity. The curvature of each solution is uniquely determined by the initial
interface perturbation.

The behaviour seen in figure 3 makes physical sense. If the interface is perfectly
flat (ζ = 0), then there is no dynamic motion and the velocity is zero. However, any
curvature in the interface will allow the heavy fluid to sink and the resultant bubble
to rise up. Thinner bubbles grow faster, and it appears that there is a positive cor-



Title Suppressed Due to Excessive Length 11

relation between curvature and velocity. However, at a sufficient curvature (which
depends on the Atwood number), there is a maximally fast bubble, and at curvatures
higher than this, the velocity becomes decreases with curvature. The velocity even-
tually approaches zero at the critical curvature (ζ =−3/8k). This unique curvature
is a stagnation point for the system.

A=1

A=2/3

A=1/3

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.5

1.0

1.5

2.0

Γ√
gk

ζ

ζcrit

Fig. 4 The intefacial shear (Γ ) scaled by growth rate (
√

gk, g = Gta) as a function of its curvature
(ζ ), note that larger Atwood numbers give a larger interfacial shear.

The interfacial shearing continuously grows with curvature (figure 4), and is
maximal at ζ =−3/8k. We conclude that whilst the interfacial shearing does grow
with velocity, it eventually dominates the dynamics and those solutions with max-
imal shear do have a lower velocity. Thus, whilst the interfacial shearing is depen-
dent on the velocity, it is a competing mechanism in the dynamics and resists rising
bubbles reaching their maximal velocity. The velocity is highly sensitive to this in-
terfacial shearing and nonlinear bubbles have a multiscale dependence on both the
curvature (a parameter governing its effective acceleration) and the interfacial shear.

In any case, we expect the dynamics to be dominated by the bubble exhibiting the
highest velocity, which we herein call the ”Atwood” bubble. Numerical simulations
involving competing bubbles of various velocities demonstrate that asymptotic dy-
namics are dominated by bubbles with the highest velocity [3]. We thus expect the
Atwood solution to be the physically relevant one.

We can therefore conclude that there is a one-parameter family of solutions that
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arises due to the multiscale character of the dynamics. The dynamics is multiscale
and governed by the interaction of acceleration and the interfacial shearing. How-
ever, any system will be dominated by the fastest or ”Atwood” type solution in the
asymptotic regime.

4 Spike Dynamics

Spikes are the complementary structure of bubbles. They are concave in the positive
θ direction and flow from the heavy fluid into the light (v < 0), they have positive
curvature (ζ > 0, p < 0). The asymptotic velocity has the form seen in figure 5.

There are a number of unique features in the asymptotic velocities of the spikes.

limA→1
A=0.9

A=2/3

A=1/3

0.2 0.4 0.6 0.8 1.0

2

4

6

8

v√
g/k

ζ

ζcrit

Fig. 5 The dependence of spike velocity (v) scaled by growth rate (
√

g/k, g = Gta) on the cur-
vature (ζ ). The dynamics as A→ 1 is unbounded for all curvatures less than the critical curvature.

Much like bubbles, there is a critical curvature (ζ = 3/8k) which forms a stagna-
tion point for spikes. Unlike bubbles, however, spikes with very small curvatures
(ζ → 0) do not tend towards stagnation, but reach unbounded growth. It may be
tempting to suggest that these singularities are nonphysical, but they correspond to
unbounded growth in the asymptotic (t → ∞) regime. This is not nonphysical. Fur-
thermore, our analysis has restricted itself to finding dynamics on the order ∼ k. A
singular velocity suggests that the dynamics of the system outgrows this scale. This
growth is likely the mechanism for the transition between the nonlinear dynamics
and the mixing regime. Thus, this analysis could open the door to understanding the
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hitherto unexplored mixing regime.

The exact scaled curvature at which the spike velocity becomes asymptotic is κ(A)k,
where:

κ(A) =
3
8

1−
√

1−A2

A
(39)

And it is interesting to note that at this curvature, the interfacial shearing is also
singular (figure 6), suggesting that the dynamics grows beyond ∼ k in both of the
associated scales (wavelength and amplitude). As such, the effect of interfacial shear
is not dominated by this unbounded growth in velocity and the dynamics of the
spikes is also to be understood as a multiscale phenomenon. It should also be noted
that in the limit of the density of the lighter fluid tending towards zero (A→ 1), the
spike velocity becomes unbounded for all curvatures less than the stagnant critical
curvature (ζ = 3/8k).

limA→1=∞

A=0.9

A=2/3

A=1/3

0.2 0.4 0.6 0.8 1.0

10

20

30

40

Γ√
gk

ζ

ζcrit

Fig. 6 The dependence of shear (Γ ) scaled by growth rate (
√

gk, g = Gta) on the curvature (ζ ).
The dynamics as A→ 1 is unbounded for all curvatures. In the rescaling, g = Gta

5 Conclusion

By using group theoretic methods, we have explored the linear and non-linear dy-
namics of the large-scale structures in Rayleigh Taylor instabilities under variable
acceleration. We have considered an interface with two translational symmetries un-
der a time-varying acceleration with power-law dependence - in particular, power-
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law with exponents larger than -2. By invoking the theory of group representations.
we have expanded the flow fields, derived a dynamical system from the governing
equations and then found asymptotic solutions for both the bubbles and spikes that
emerged (Equations 12).

For the early time regime, we found that the behaviour of bubbles and spikes can
be described using a linear combination of Bessel functions (Equation 26). For non-
linear bubbles and spikes, however we found asymptotic solutions with power-law
time dependence. For non-linear bubbles, we have observed that for small enough
curvatures, the velocity is small (Figure 4). For spikes, we have observed that the
velocity does fall away for sufficiently large curvatures, but is also singular at a cur-
vature determined by the Atwood number (Figure 5). We linked this unexpected and
unusual behaviour to the interfacial shearing. For non-linear bubbles, the interfacial
shear mediates the decrease in velocity that occurs at large curvatures. For the non-
linear spikes, the interfacial shear induces the velocity bounding at large curvatures,
but it also grows with the singular velocity that appears at sufficiently small curva-
tures.

We found that the shear dominates the acceleration induced dynamics in bubbles
and spikes of sufficient curvature, meaning that the velocity is dependent on the
interfacial shearing. The problem of Rayleigh Taylor instability therefore exhibits
multi-scale dynamics and has a one-parameter family of solutions.

To conclude, we have studied the problem of Rayleigh-Taylor instability in time-
varying acceleration using group theoretic methods. We have found the interface
dynamics to directly depend on the interfacial shearing and revealed the multi-scale
dynamics of late-time Rayleigh-Taylor nature. Our analysis has achieved excellent
agreement with available observations, and gives new theoretical benchmarks for
future analysis, experiments and simulations.
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