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1 Introduction

As mathematicians found out in the last century, there are only four normed di-
vision algebras1 over R: the real numbers themselves, the complex numbers, the
quaternions and the octonions. Whereas the real and complex numbers are very
well-known and most of their properties carry over to the quaternions (apart from
the fact that these are not commutative), the octonions are very different and harder
to handle since they are not even associative. However, they can be used for several
interesting topological constructions, often paralleling constructions known for R,
C or H.

In this article, we will construct OP2, a space having very similar properties to
the well-known two-dimensional projective spaces over R, C and H.

We will begin, in the second section, by recalling a construction of the octonions
and discussing their basic algebraic properties. We will then move on to actually
constructing the octonionic projective plane OP2. In the fourth section, we will dis-
cuss properties of OP2 and applications in algebraic topology. In particular, we will
use it to construct a map S15 −→ S8 of Hopf invariant 1. Moreover, it will be ex-
plained why there cannot be projective spaces over the octonions in dimensions
higher than 2.
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1 A division algebra over R is a finite-dimensional unital R-algebra without zero divisors, not
necessarily commutative or associative. A normed algebra over R is an R-algebra A together with
a map ‖·‖ : A→ R coinciding with the usual absolute value on R ·1∼= R, satisfying the triangular
inequality, positive definiteness and the rule ‖xy‖= ‖x‖‖y‖.
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2 Construction of O

In this section, we will explain how the octonions can be constructed. Of course,
there are many ways to define them – the simplest way would be to choose a basis
of O as a vector space and then specify the products of each pair of basis elements.
We will try to explain a little better the “reason” for the existence of octonions by
giving a construction which leads from the quaternions to the octonions, but which
can also be used to construct C out of R and H out of C, the so-called Cayley-
Dickson construction.

As mentioned in the introduction, the octonions are neither commutative nor even
associative. However, they have the following crucial property called alternativity:

For any two octonions x and y, the subalgebra of O generated by x and y is
associative.

Here a subalgebra is always meant to contain the unit. By a nontrivial theorem
of Emil Artin [Zor31, Sch95], the above condition is equivalent to requiring that the
formulas

x(yy) = (xy)y and (xx)y = x(xy) (1)

hold for any two elements x,y ∈O.
We will now begin to construct the octonions. To do this, note that the well-

known division algebras R, C and H are not only normed R-algebras, but they
come together with a conjugation: an anti-involution ∗ (i.e., a linear map ∗ from
the algebra to itself such that (xy)∗ = y∗x∗ and (x∗)∗ = x) with the property that
xx∗ = x∗x = ‖x‖2.

This extra structure goes into the following construction, called “doubling con-
struction” or “Cayley-Dickson construction”: Let (A,‖·‖ ,∗ ) be a normed real alge-
bra with conjugation. Then we define the structure of a normed real algebra with
conjugation on the real vector space A2 by

• (a,b) · (c,d) = (ac−d∗b,da+bc∗),

• ‖(a,b)‖=
√
‖a‖2 +‖b‖2,

• (a,b)∗ = (a∗,−b).

It can be checked that this turns A2 indeed into a real algebra with conjugation.
Furthermore, it also conserves most of the properties as an algebra that A has had,
though not all:

• The real numbers are an associative and commutative division algebra and have
the additional property that the conjugation is just the identity. Applying the
Cayley-Dickson construction, we obtain the complex numbers which are still an
associative and commutative division algebra, but the conjugation is not trivial
any longer – it is the usual complex conjugation.

• Going from C to H, we lose the property of commutativity: H is only an asso-
ciative division algebra.
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• Applying the construction to H, we get the octonions O, which are not even
associative any more, but are still a normed division algebra and are alternative
as explained above.

• Continuing to apply the Cayley-Dickson construction, one obtains a 16-dimensional
real algebra called the sedenions. The sedenions have zero divisors, and therefore
cannot have a multiplicative norm. They are by far less important than the other
four division algebras. However, they still satisfy a property called flexibility
which is a very weak form of associativity. Interestingly, if the Cayley-Dickson
construction is applied again, this property is not lost, so there are flexible 2n-
dimensional normed real algebras for every n [Gui97].

The proofs of these statements are rather lengthy, but straightforward. We will
carry them out for the passage from quaternions to octonions, since this is the case
we are most interested in and also the most difficult one, and leave the remaining
cases to the reader.

Proposition 1. O is an alternative normed division algebra.

Proof. For the alternativity, we prove (1) and then use Artin’s theorem to deduce
alternativity. We write x = (a,b) and y = (c,d) with a,b,c,d ∈ H and write out
both sides of the first equation, using the definition of the multiplication displayed
above. Doing the calculation and obvious cancellations, this leaves us to show the
two identities

d∗bc+d∗da+d∗bc∗ = add∗+ c∗d∗b+ cd∗b

and
dac−dd∗b+dac∗ = dca+dc∗a−bdd∗ .

Considering the first equation, note that dd∗ = d∗d = ‖d‖2 is a real number and thus
central, so that d∗da = add∗. The remaining terms can be regrouped as follows:

d∗b(c+ c∗) = (c+ c∗)d∗b .

However, c+c∗ is a real number as well, as can for instance be seen easily from the
Cayley-Dickson construction, so that we have proved the first of the two identities.
The second can be traced back similarly to the facts that dd∗b = bdd∗ and

da(c+ c∗) = d(c+ c∗)a .

We now prove that the octonion norm is multiplicative. This is also not com-
pletely formal, as can be seen from the fact that it is not true for the sedenions. With
notation as above, the equation ‖(a,b)‖2 ‖(c,d)‖2 = ‖(a,b)(c,d)‖2 can be simpli-
fied to

acb∗d +d∗bc∗a∗ = bacb∗+bc∗a∗d∗ . (2)

Following [KS89, p. 48], we consider two cases: If d is real, the equation holds true
trivially. If d is purely imaginary in the sense that d∗ = −d, then the equation is
equivalent to
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d(acb∗+bc∗a∗) = (acb∗+bc∗a∗)d ,

which is true since
acb∗+bc∗a∗ = acb∗+(acb∗)∗

is real. By linearity, (2) is true for all d.
The multiplicativity of the norm at hand directly implies the fact that O is a

division algebra: If xy = 0, then

‖x‖‖y‖= ‖xy‖= 0 ,

so ‖x‖= 0 or ‖y‖= 0 and thus x = 0 or y = 0 since ‖·‖ is a norm. ut

Remark 1. (i) Note that all formulas of the above proof are written without paran-
theses, thus we used secretly that H is associative. This is essential: As mentioned
above, the sedenions, constructed out of the non-associative octonions, are neither
alternative, nor a division algebra (and, consequently, they cannot possess a multi-
plicative norm).

(ii) The book [CS03] gives a geometric argument that the octonions are alterna-
tive, which does not use Artin’s theorem. See Section 6.8, in particular Theorem 2.

3 Construction of OP2

This section discusses a construction of a projective space of dimension 2 over the
octonions (which is very similar to the construction in [Bae02]). Our goal is to get
spaces with similar properties as their analogues over the real and complex numbers
and the quaternions. The naïve ansatz would be to define the n-dimensional octo-
nionic projective space as a quotient of On+1 \ {0}, identifying every vector with
its (octonionic) multiples. However, when one starts calculating, one sees that as-
sociativity is needed for this to be an equivalence relation. Since the octonions are
not associative, we have to be more careful. In fact, the construction given in the
following only works for n≤ 2 (thanks to the property of alternativity), and we will
see that there are theoretical obstructions to the existence of higher OPn.

One main difference to the other three projective planes is that we don’t construct
OP2 as a quotient of O3 \{0}, but we restrict ourselves to the subset

T =
{
(x,y,z) ∈O3; ‖x‖2 +‖y‖2 +‖z‖2 = 1 and the subalgebra generated

by x,y and z is associative
}
.

We call two triples (x,y,z),(x̃, ỹ, z̃) ∈ T equivalent, (x,y,z)∼ (x̃, ỹ, z̃), if and only
if the six equations

xx∗ = x̃x̃∗, xy∗ = x̃ỹ∗, xz∗ = x̃z̃∗, yy∗ = ỹỹ∗, yz∗ = ỹz̃∗, zz∗ = z̃z̃∗
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hold. (The three remaining relations of a similar form follow from these by the
properties of the conjugation.) It is obvious that this is an equivalence relation, and
thus we can set

OP2 = T/∼ .

3.1 Manifold structure

A first observation is that our space OP2 constructed like this is quasi-compact
since it is the quotient of a quasi-compact space. We will now show that it’s a 16-
dimensional real manifold.

The proof uses the following construction. Let a,b,c be real numbers. Define an
R-linear map

`= `(a,b,c) : O3 −→O , `(x,y,z) = ax+by+ cz .

Note that for two triples (x,y,z) ∼ (x̃, ỹ, z̃) in T , we have `(x,y,z) = 0 if and only
if `(x̃, ỹ, z̃) = 0, since `(x,y,z) vanishes exactly if `(x,y,z)`(x,y,z)∗ vanishes, and
`(x,y,z)`(x,y,z)∗ = `(x̃, ỹ, z̃)`(x̃, ỹ, z̃)∗ by the definition of ∼ and since a,b,c are
real.

Thus we get a well-defined open set

U` =U(a,b,c) = {[x,y,z]; `(x,y,z) 6= 0} ⊂OP2.

Proposition 2. OP2 is a locally Euclidean topological space.

Proof. Suppose that c 6= 0. Consider the maps

ϕ` : U`→O2 , [x,y,z] 7→

(
x`∗

‖`‖2 ,
y`∗

‖`‖2

)
,

where `= `(x,y,z). This map is well-defined (the argument given above shows that
‖`‖2 = ``∗ only depends on [x,y,z] and not on (x,y,z); the same argument works for
x`∗ and y`∗) and thus continuous by the universal property of the quotient topology.
An inverse map is given by

ψ` : O2→U` ,

(x,y) 7→
[

x
r
,

y
r
,

1−ax−by
cr

]
, r =

√
‖x‖2 +‖y‖2 +

1
c2 ‖1−ax−by‖2 .

Recall that in the definition of OP2, we only consider triples whose entries lie in an
associative subalgebra of O. Thus this map is only well-defined since O is alterna-
tive, as defined in Section 2. Here we use that for every octonion y, the conjugate y∗

lies in the subalgebra generated by y since it only differs from −y by a real number.
This can directly be seen from the Cayley-Dickson construction.
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Note that equation (1) would not be sufficient at this point, but we use the nontriv-
ial Artin theorem which states that (1) implies alternativity. Moreover, it is exactly
at this point (and in the next paragraph) where our procedure breaks down if we
want to construct higher OPn in the same way.

Checking that ϕ` and ψ` are inverse to each other is a simple calculation. The
reader may amuse herself by reproducing them. Note that we evade associativity of
O by carrying out calculations only with elements lying in an associative subalgebra
of O – by definition of T for the one and by the alternativity of O for the other
direction.

The same obviously works with a or b instead of c, thus for all triples (a,b,c) 6=
(0,0,0). Thus we have covered OP2 by the three chart regions U(1,0,0),U(0,1,0) and
U(0,0,1). ut

Remark 2. (i) It is easy to check that the coordinate changes are smooth, such that
OP2 in fact becomes a smooth manifold.

(ii) The referee raised the question whether OP2 admits the structure of a complex
manifold. Since it is an (n−1)-connected 2n-manifold for n = 8, we may apply the
criterion of [Yan12, Thm. 1], which says that OP2 doesn’t even admit a stable almost
complex structure. Note that HP2 admits a stable almost complex structure, but no
almost complex structure [Yan12, Thm. 1, 2].

Lemma 1. OP2 is Hausdorff.

Proof. Let (x,y,z) and (x′,y′,z′) two elements in T . We have to find (a,b,c) ∈ R3

such that `(a,b,c)(x,y,z) 6= 0 and `(a,b,c)(x′,y′,z′) 6= 0, since then it follows that [x,y,z]
and [x′,y′,z′] both lie in the open subset U(a,b,c) which we already know to be Haus-
dorff.

To find (a,b,c) as above, note that given x, y and z, the set of all solutions to the
equation ax+by+ cz = 0 is a subspace of R3 of dimension at most 2, and the same
is true for the equation ax′+ by′+ cz′ = 0. Since the union of two planes is never
the whole R3, we find a point that fails to satisfy both of these equations. ut

Corollary 1. OP2 is a closed 16-dimensional real manifold. ut

3.2 The projective line OP1

Consider the closed subset of OP2 given by all equivalence classes of the form
[x,y,0] with x,y ∈O. It is immediate from the definitions that this is homeomorphic
to the space

{(x,y) ∈O2;‖x‖2 +‖y‖2 = 1}/∼ ,

where (x,y)∼ (x̃, ỹ) if and and only if the three relations

xx∗ = x̃x̃∗,xy∗ = x̃ỹ∗,yy∗ = ỹỹ∗
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hold. This is of course the analogue of our construction of OP2 in one dimension
lower, so we call the resulting space OP1.

By the same argumentation as in the previous paragraph, OP1 is a closed man-
ifold. Moreover, there is a homeomorphism OP1 ∼= S8. This can be constructed in
the very same way as in the familiar cases over R, C or H (since the map in one
direction involves only one element of O at a time).

3.3 CW structure

The octonionic projective plane has a very simple cell structure with one cell in each
of the dimensions 0, 8 and 16. This cell structure is constructed in exactly the same
way as the analogous structures for RP2, CP2 and HP2.

A little lemma that we will need in the proof of the following statements is the
observation that we can choose a vector space isomorphism O ∼= R8 such that the
norm ‖·‖ becomes the usual Euclidean norm on R8. This follows directly from the
definition of O via the Cayley-Dickson construction, but it can also be deduced
from the formal properties of the conjugation map: 〈x,y〉 = 1

2 (x
∗y+ y∗x) defines a

symmetric, positive definite bilinear form on the vector space O, so we can find an
orthonormal basis by Sylvester’s law of inertia.

To begin with, consider the canonical inclusion

OP1 ↪→OP2, [x,y] 7→ [x,y,0] .

By our definition of OP1, this map is a homeomorphism onto its image, which
is closed in OP2. Since OP1 ∼= S8, we can use OP1 as the 8-skeleton in our cell
decomposition. Now consider the map

f : S15 −→OP1, (x,y) 7→ [x,y] ,

where we think of S15 as a subset of R16 = R8×R8.

Lemma 2. We have OP2 =OP1∪ f D16.

Proof. A map from D16 to OP2 coinciding with f on ∂D16 is given by

(x,y) 7→
[

x,y,
√

1−‖x‖2−‖y‖2
]
.

It is easily checked that this map induces a bijective continuous map from OP1 ∪ f
D16 to OP2 which is thus a homeomorphism since OP1∪ f D16 is quasi-compact and
OP2 is Hausdorff. ut
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4 Cohomology of OP2

After having constructed this very simple cell structure for OP2, it is easy to com-
pute the cohomology via the cellular cochain complex:

Corollary 2. Let A be any abelian group. Then

Hk(OP2,A)∼=

{
A , k = 0,8 or 16 ,
0 , else.

The homology groups are computed in exactly the same way and with the same
result.

Similarly, we can compute the homotopy groups of OP2: By cellular approxima-
tion, πn(OP2,∗) = 0 for n≤ 7 and πn(OP2,∗) = πn(S8) for n≤ 14.

The following question has been brought to the author’s attention by Jens Rein-
hold.

Question 1. Is there a closed, 8-connected manifold of positive dimension with odd
Euler characteristic?

The octonionic projective plane gives such a manifold which is 7-connected. An
8-connected example would have to have dimension divisible by 32, by a result of
Hoekzema [Hoe18, Thm. 1.2, Cor. 4.2].

4.1 Connection with the Hopf invariant 1 problem

The Hopf invariant is a classical invariant for maps f : S2n−1 → Sn, with n > 1.
It goes back to work of Hopf in the 1930’s. We quickly recall its definition from
[MT08]. Let us consider the mapping cylinder of such a map f . By inspection of
the cellular cochain complex, as in Corollary 2 above, it has cohomology groups in
degree n and 2n which are cyclic with generators τ and σ . These are unique up to
sign, depending on the orientation of the two spheres. The Hopf invariant H( f ) is
defined by the formula

τ
2 = H( f ) ·σ .

It is unique up to sign, which only depends on the orientation of S2n−1 since τ

appears squared.
The question in which dimensions there exists a map of Hopf invariant 1 was a

famous open problem in the early days of algebraic topology, until Adams proved
in 1960 that this is only the case for d ∈ {1,2,4,8}. The sought maps for d = 2,4,8
can be constructed as the attaching maps of the top dimensional cell in the projective
planes over the complex numbers, quaternionics and octonionics, and we will now
prove this for the octonionics, by analysing the ring structure on the cohomology of
OP2.



The octonionic projective plane 9

Theorem 1. The attaching map f : S15 −→ S8 of the 16-cell in OP2 has Hopf in-
variant ±1, the sign depending on the orientation of S15.

Proof. Let τ and σ be generators of H8(OP2,Z) and H16(OP2,Z), respectively.
Since OP2 is the mapping cylinder of f , we just have to show that τ2 = σ (up
to sign) by the definition above. Since we have seen OP2 to be a closed manifold
which is orientable since it is simply-connected, we can profit of Poincaré duality to
do so: Let µ ∈ H16(OP2,Z) be a fundamental class. Using the universal coefficient
theorem as well as Poincaré duality, we get isomorphisms

Hn(OP2,Z)∼= Hom(Hn(OP2,Z),Z)∼= Hom(H16−n(OP2,Z),Z) ,

where the map from the left to the right maps f to the linear map

g 7→ 〈 f ,µ ∩g〉= 〈g∪ f ,µ〉 .

Now, Hom(H8(OP2,Z),Z) is isomorphic to Z, generated by the two isomorphisms.
Thus, τ has to be mapped to an isomorphism H8(OP2,Z)−→ Z, which in turn has
to map τ to a generator of Z, so

〈τ2,µ〉=±1 .

Now, setting τ2 = kσ with k ∈ Z, we get

k · 〈σ ,µ〉=±1 ,

so k divides 1, giving k =±1 and thus τ2 = σ . ut

Note that the constructions we have carried out in the last two sections can be
done in a much more general setting: Suppose that A is a normed real algebra A of
dimension d < ∞ with conjugation, which is alternative and has no zero divisors.
Then we can write down the same formulas as above to define a topological space
AP2, prove that it is a manifold and give it a cell structure with one cell in each of
the dimensions 0, d and 2d. The attaching map of the 2d-cell will then be a map
S2d−1 −→ Sd of Hopf invariant 1.

In [EHH+91, Sec. 8.1, 8.2, 9.1], it is shown that the existence of the two extra
structures on A does not have to be claimed on its own: For any real alternative
division algebra, there is a canonical norm and conjugation2.

Summarising, we have argued that the following holds:

Theorem 2. If there exists a real alternative division algebra of dimension d, then
there is a map S2d−1 −→ Sd of Hopf invariant 1.

By Adams’ result, this is only the case for d ∈ {1,2,4,8}. Thus the construction
of the projective plane shows that a real alternative division algebra can only exist

2 As the alert reader may have noticed, we have used exactly one more property of the conjuga-
tion, namely the fact that z∗ always lies in the subalgebra generated by z. However, the canonical
conjugation constructed in [EHH+91] always has this property.
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in dimensions 1,2,4 and 8. Of course, this is still true if the alternativity claim is
dropped, but one needs a different proof for this [Hat09, Sec. 2.3].

4.2 Non-existence of higher octonionic projective spaces

As pointed out above, our construction of the octonionic projective space OP2

doesn’t generalise to higher dimensional projective spaces since we have intensively
used the fact that all calculations are done in associative subalgebras of O. However,
there is also a conceptual reason that there can’t be a space which deserves to be
called OP3 (or OPn for some n≥ 3) which we will now explain.

We will only claim two properties of our wannabe projective octonionic 3-space:
it should be a closed manifold, and it should have a cell structure with OP2 as the
16-skeleton and only one more 24-cell. It then follows directly that the cohomology
H∗(OP3,Z) is Z in dimensions 0,8,16 and 24 and trivial otherwise.

By a similar argument as for OP2, we also get the ring structure on the cohomol-
ogy:

H∗(OP3,Z)∼= Z[x]/(x4), |x|= 8.

To see this, note that the inclusion of the 16-skeleton induces an isomorphism on
cohomology in degrees smaller than 23 which respects the multiplicative structure,
thus it is sufficient to show that a fourth power of the generator of H8 generates H24.
But this is done in a very similar way as for the octonionic projective plane, using
Poincaré duality.

However, using Steenrod powers modulo 2 and 3, one can show that a space
with cohomology Z[x]/(xm), m > 3, can only exist if x has degree 2 or 4 [Hat02,
Sec. 4.L].

4.3 The story continues

We have used the octonions to construct a map between spheres of Hopf invariant
1. There are other phenomena in the intersection of algebra, topology and geometry
that show deep relations with the octonions. Examples include exotic spheres, Bott
periodicity and exceptional Lie groups (these can be used to see that OP2 is a ho-
mogeneous space, for instance). The article [Bae02] explains these and many more
interesting examples.
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