Approximation and tractability of periodic Sobolev embeddings with increasing smoothness on high-dimensional domains

Thomas Kühn

Universität Leipzig, Germany

Workshop "On the frontiers of high-dimensional computation" MATRIX, Creswick (Australia), 4–15 June 2018 11 June 2018

(Based on joint work with my diploma student Franziska Brückner)

High-dimensional approximation

- High-dimensional problems appear in many applications, examples will be presented in this workshop
- Quantum chemistry: *N*-particle systems modelled in Besov-type spaces \bigcirc approximation problem in dimension d = 3N, with huge *N*
- Financial mathematics: Stochastic PDEs, require measurements every day
 ∧ integration problem in dimension d = 365n (n years)
- Often: Dimension not clear a priori (more particles, longer period)
- In this talk: Approximation of Sobolev functions on high-dimensional domains
- Aim: Tractability issues, with special emphasis on the dependence of the hidden constants on the dimension

Thomas Kühn (Leipzig)

High-dimensional approximation

• Well-known fact: The approximation problem for isotropic Sobolev embeddings of fixed smoothness s > 0

$$I_d: H^s(\mathbb{T}^d) \to L_2(\mathbb{T}^d) \qquad (d \in \mathbb{N})$$

is at most weakly tractable, depending on the chosen norm.

several recent papers: K./Sickel/Ullrich (JoC 2014), Siedlecki/Weimar (JAT 2015), Chen/Wang (JoC 2017), Werschulz/Woźniakowski (JoC 2017),...

- Question: How can one improve the level of tractability?
- Natural option: Consider 'better' spaces, for instance...

Motivation

- Sobolev spaces of dominating mixed smoothness
- weighted Sobolev spaces
- spaces of C^{∞} or analytic functions

Many authors used such spaces for integration and approximation problems in IBC, here is an incomplete list:

Chen, Dick, Fasshauer, Gnewuch, Hickernell, Irrgeher, Kritzer, Kühn, Kuo, Larcher, Laimer, Lifshits, Mayer, Novak, Papageorgiou, Petras, Pillichshammer, Sloan, T. Ullrich, Wang, Wasilkowski, Werschulz, Woźniakowski

Most of these spaces are of tensor type.

• Our choice: isotropic Sobolev spaces with increasing smoothness

ヘロト 不得 とうき とうとう ほう

Approximation numbers

 Approximation numbers (also called linear widths) of a (bounded linear operator) *T* : *X* → *Y* between Banach spaces

$$a_n(T:X \to Y) := \inf\{\|T - A\| : \operatorname{rank} A < n\}$$

Many applications

Functional Analysis, Approximation Theory, Numerical Analysis,...

- Useful properties, in particular
 - (1) Additivity $a_{n+k-1}(S+T) \leq a_n(S) + a_k(T)$
 - (2) Multiplicativity $a_{n+k-1}(S \circ T) \leq a_n(S) \cdot a_k(T)$
 - (3) Rank property rank $T < n \Longrightarrow a_n(T) = 0$

Interpretation in terms of algorithms

• Every operator $A: X \to Y$ of finite rank n can be written as

$$Ax = \sum_{j=1}^n L_j(x) y_j$$
 for all $x \in X$

with linear functionals $L_j \in X^*$ and vectors $y_j \in Y$.

- \sim A is a linear algorithm using arbitrary linear information
- worst-case error of the algorithm A

$$err^{wor}(A) := \sup_{\|x\| \le 1} \|Tx - Ax\| = \|T - A\|$$

n-th minimal worst-case error of the approximation problem for T (w.r.t. linear algorithms and arbitrary linear information)

$$\operatorname{err}_{n}^{\operatorname{wor}}(T) := \inf_{\operatorname{rank} A \leq n} \operatorname{err}^{\operatorname{wor}}(A) = a_{n+1}(T)$$

Thomas Kühn (Leipzig)

4 E N 4 E N

Hilbert space setting

- Let $T: H \rightarrow F$ be a compact linear operator between Hilbert spaces.
- Singular numbers (= singular values, known from SVD)

$$s_n(T) := \sqrt{\lambda_n(T^*T)}$$

• Schmidt representation. \exists ONS $(e_k) \subset H$ and $(f_k) \subset F$ s.t.

$$Tx = \sum_{k=1}^{\infty} s_k(T) \langle x, e_k \rangle f_k \quad ext{for all } x \in H \,.$$

• Approximation numbers = singular numbers

$$a_n(T) = \inf_{\operatorname{rank} A < n} \|T - A\| = s_n(T)$$

Best approximations - optimal algorithms

• Truncated Schmidt representation of $T: H \to F$

$$A_n x := \sum_{k=1}^n s_k(T) \langle x, e_k \rangle f_k \quad \curvearrowright \quad \|T - A_n\| = a_{n+1}(T) = err_n^{wor}(T).$$

- Input: Linear information on an element of x ∈ H, n Fourier coefficients of x w.r.t the ONS (e_k)
 - **Output:** $A_n x =$ best approximation of Tx, realizing the *n*-th minimal worst-case error, measured in the norm of the target space F.
- Best approximation: given by the concrete algorithm A_n .

Information complexity

• Let
$$S_d: F_d \to G_d, d \in \mathbb{N}$$
 be an approximation problem.

• Approximation numbers:

Fixed number *n* of information \implies optimal error $a_{n+1}(S_d)$

• From a practical point of view it is more reasonable to

fix an error level $\varepsilon > 0$ and ask how many pieces of information an optimal algorithm requires, i.e. to consider the 'inverse' function, the

information complexity $n(\varepsilon, d) := \min\{n \in \mathbb{N} : a_{n+1}(S_d) \le \varepsilon\}$

• \land hierarchy of tractability notions, which describe the behaviour of $n(\varepsilon, d)$ as $\varepsilon \to 0$ and/or $d \to \infty$

Polynomial tractability notions

For an approximation problem

$$S_d: F_d \to G_d \qquad (d \in \mathbb{N})$$

we consider the following levels of tractability:

- SPT strong polynomial tractability $n(arepsilon,d) \leq C(1/arepsilon)^p$ for some C,p>0
- **PT** polynomial tractability

 $\mathit{n}(arepsilon, d) \leq \mathit{C}(1/arepsilon)^{\mathit{p}} d^{\mathit{q}}$ for some $\mathit{C}, \mathit{p}, \mathit{q} > 0$

• QPT – quasi-polynomial tractability

 $n(\varepsilon, d) \leq C \exp(t \cdot (1 + \log \frac{1}{\varepsilon})(1 + \log d))$ for some C, t > 0

・ロト (四) (日) (日) (日) (日)

Weak tractability notions

• (α, β) -WT – (α, β) -weak tractability $(\alpha, \beta > 0)$

$$\lim_{\varepsilon^{-1}+d\to\infty}\frac{\log n(\varepsilon,d)}{\varepsilon^{-\alpha}+d^{\beta}}=0$$

• SPT \Longrightarrow PT \Longrightarrow QPT \Longrightarrow UWT \Longrightarrow (α, β)-WT \Longrightarrow no curse

Isotropic Sobolev spaces $H^{s}(\mathbb{T}^{d})$

- Torus $\mathbb{T} = [0, 2\pi]$, equipped with normalized Lebesgue measure
- Fourier coefficients of $f \in L_2(\mathbb{T}^d)$

$$\widehat{f}(k) = rac{1}{(2\pi)^d} \int_{\mathbb{T}^d} f(x) e^{-ikx} dx \quad , \quad k \in \mathbb{Z}^d$$

• $H^{s}(\mathbb{T}^{d})$ consists of all $f \in L_{2}(\mathbb{T})$ such that

$$\|f\| = \underbrace{\left(\sum_{k \in \mathbb{Z}^d} \left(1 + \sum_{j=1}^d |k_j|^p\right)^{2s/p} |\widehat{f}(k)|^2\right)^{1/2}}_{(j+1) + (j+1)} < \infty.$$

weighted ℓ_2 -sum of Fourier coefficients

• Here 0 is an arbitrary parameter. But for fixed <math>s > 0 and $d \in \mathbb{N}$, all these norms are equivalent, with equivalence constants depending on s and d. We will always work with p = 1.

Thomas Kühn (Leipzig) High-dimensio

Theorem (Brückner, K. 2018)

For the approximation problem of isotropic Sobolev spaces

$$I_d: H^{s(d)}(\mathbb{T}^d) o L_2(\mathbb{T}^d) \qquad (d \in \mathbb{N})$$

with increasing smoothness $0 < s(1) \le s(2) \le ... \le s(d) \le ...$ we have

• SPT
$$\iff$$
 PT $\iff \inf_{d \in \mathbb{N}} \frac{s(d)}{d} > 0$
• QPT $\iff \inf_{d \in \mathbb{N}} \frac{s(d)(1 + \log d)}{d} > 0$

Remark:

At a first glance, the equivalence SPT \iff PT is quite surprising, but this effect appeared already in several other results in the literature.

Weak tractability

Theorem (Brückner, K. 2018)

Let
$$0 < s(1) \le s(2) \le ...$$
 and set $s := \lim_{d \to \infty} s(d)$.
Then the approximation problem

$$I_d: H^{s(d)}(\mathbb{T}^d) o L_2(\mathbb{T}^d) \qquad (d \in \mathbb{N})$$

satisfies

• (α, β) - WT	\iff	$max(lpha m{s},eta)>1$	$(\alpha, \beta > 0)$
--------------------------	--------	------------------------	-----------------------

- WT s > 1 \Leftrightarrow
- UWT $s = \infty$

Note: There is never curse of dimensionality.

3

Example - comparison with mixed spaces

Embeddings

$$H^{sd}(\mathbb{T}^d) \hookrightarrow H^s_{mix}(\mathbb{T}^d) \hookrightarrow H^s(\mathbb{T}^d)$$

• Asymptotic behaviour of approximation numbers

For fixed d and s and $n \to \infty$, we have the following weak equivalences, with hidden constants depending on d and s.

$$a_n(I_d : H^{sd}(\mathbb{T}^d) \to L_2(\mathbb{T}^d)) \sim n^{-s}$$

$$a_n(I_d : H^s_{mix}(\mathbb{T}^d) \to L_2(\mathbb{T}^d)) \sim n^{-s}(\log n)^{(d-1)s}$$

$$a_n(I_d : H^s(\mathbb{T}^d) \to L_2(\mathbb{T}^d)) \sim n^{-s/d}$$

- Remark: The spaces $H^{sd}(\mathbb{T}^d)$ and $H^s_{\textit{mix}}(\mathbb{T}^d)$ are
 - very similar in the sense of approximation
 - but totally different concerning tractability

4 E N 4 E N

Optimal asymptotic constants

• For fixed s and d, the following limit exists.

$$\lim_{n\to\infty}\frac{a_n(I_d:H^{sd}(\mathbb{T}^d)\to L_2(\mathbb{T}^d))}{n^{-s}}=\left(\frac{2^d}{d!}\right)^s=:\lambda_s(d)$$

 $\lambda = \lambda_s(d)$ is the optimal asymptotic constant in the following sense: For every $\varepsilon > 0$ there is $N_{\varepsilon} \in \mathbb{N}$ such that

$$\frac{1}{1+\varepsilon}\cdot\frac{\lambda}{n^s}\leq \mathsf{a}_n(\mathit{I}_d)\leq (1+\varepsilon)\cdot\frac{\lambda}{n^s}\qquad\text{for all }n\geq \mathit{N}_\varepsilon\,.$$

• Compare with the corresponding result for mixed spaces

$$\lim_{n \to \infty} \frac{a_n(I_d : H^s_{mix}(\mathbb{T}^d) \to L_2(\mathbb{T}^d))}{n^{-s}(\log n)^{(d-1)s}} = \left(\frac{2^d}{(d-1)!}\right)^s$$

• For all s > 0 we have super-exponential decay of $\lambda_s(d)$ as $d \to \infty$.

Tractability

- Approximation problem $I_d: F_d \to L_2(\mathbb{T}^d), \quad (d \in \mathbb{N})$
- F_d = H^{sd}(T^d) isotropic, increasing smoothness strong polynomial tractability
 F_d = H^s_{mix}(T^d) dominating mixed smoothness quasi-polynomial tractability
 F_d = H^s(T^d) isotropic, fixed smoothness
 - weakly tractable, if s > 1
 - intractable, if $0 < s \le 1$

▲ □ ▶ ▲ □ ▶ ▲ □ ▶ □ ● ● ● ● ●

Some ideas of the proofs

- Reduction of the problem in function spaces to a simpler problem for diagonal operators in sequence spaces (indexed by Z^d)
- E.g., for $r \in \mathbb{N}$ and

$$n := \#\{k \in \mathbb{Z}^d : |k_1| + \ldots + |k_d| \le r\},\$$

this implies

$$a_n(I_d: H^{s(d)}(\mathbb{T}^d) \to L_2(\mathbb{T}^d)) = (r+1)^{-s(d)}$$

- Combinatorics, volume estimates in high-dimensional sequence spaces
- Rephrasing this is terms of information complexity n(ε, d) plus some calculus proves the characterization of the different tractability levels.

Thank you for your attention!

Creswick, 11 June 2018

æ