
CY-operators and L-functions

Duco van Straten

Abstract This a write up of a talk given at the MATRIX conference at Creswick
in 2017 (to be precise, on Friday, January 20, 2017.) It reports on work in progress
with P. CANDELAS and X. DE LA OSSA. The aim of that work is to determine,
under certain conditions, the local Euler factors of the L-functions of the fibres of a
family of varieties without recourse to the equations of the varieties in question, but
solely from the associated Picard–Fuchs equation.

1 Introduction

It is very honourable to speak the last words in this nice conference; surely these
words are not the last on hypergeometrics, but rather some further exploration into
Transhypergeometria, the unknown land of our dreams. I will report on joint work
in progress with PHILIP CANDELAS and XENIA DE LA OSSA, [9]. I will start with
some motivation.

2 Elliptic curves versus Rigid Calabi–Yau threefolds

Elliptic curves and rigid Calabi–Yau manifolds share many common features. As a
topological space, an elliptic curve is isomorphic to S1 ×S1 and a rigid Calabi–Yau
threefold is a bit like S3×S3, at least what its third cohomology is concerned. On the
arithmetic level, an elliptic curve E defined over Q determines a two dimensional
motive H1(E) and in a similar way a rigid Calabi–Yau threefold X defined over Q
produces a two dimensional motive H3(X). There are Hodge and p-adic realisations,
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giving rise to L-functions that come from classical modular forms for some Γ0(N).

Space Motive Hodge Frobenius Weil Hecke
E/Q H1(E) 0 1 1 0 T 2 −apT + p |ap| ≤ p1/2 L(H1(E)) = L( f ), f ∈ S2(Γ0(N))

X/Q H3(E) 1 0 0 1 T 2 −apT + p3 |ap| ≤ p3/2 L(H3(X)) = L( f ), f ∈ S4(Γ0(N))

By the great theorem of WILES [35], [36] we know that all elliptic curves over Q
are modular, and by further development of these methods, it was shown that rigid
Calabi–Yau threefolds defined over Q are also modular, [18], [14].

However, there are also big differences between these two cases. Elliptic curves
depend on a single modulus and form nice families. Classical normal forms are
provided by the Legendre family

Lλ : y2 = x(x−1)(x−λ )

or the Hesse family
Hλ : x3 + y3 + z3 +λxyz = 0 ,

where λ is the parameter.

On the other hand, as by definition h12 = 0, rigid Calabi–Yau spaces do not admit
any non-trivial deformations, and their occurrence is sporadic. No general descrip-
tion or construction is known for them. We refer to [22], [37] for an overview of the
exciting bestiary.

Question

Which weight four cups forms appear as modular form of rigid Calabi–Yau man-
ifolds?

For example, as can be seen from consulting [22], there are many different rigid
Calabi–Yau varieties leading to the weight four cusp form for Γ0(6), but I do not
know of any rigid Calabi–Yau threefold realising the weight four cusp form for
Γ0(7).

2.1 How can rigid varieties appear in a pencil?

Let us look at an example. The famous Schoen quintic X1 studied in [26] is the
degree 5 hypersurface in P4 given by the equation

X1 : x5
1 + x5

2 + x5
3 + x5

4 + x5
5 = 5x1x2x3x4x5.

It is easily seen to have the 125 points
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x5
i = 1, x1x2x3x4x5 = 1

as nodal singularities. There exists a small resolution π : X −→ X1 that replaces each
node by a projective line P1. X is a rigid Calabi–Yau threefold: the infinitesimal de-
formations of X can be identified with the infinitesimal deformations of X1 for which
the nodes lift, which are none. For small prime numbers the Euler factors of the L-
function can be determined counting points of X1 and correcting these counts to get
the numbers of points of the resolved manifold X . As the Galois representation is
determined by finitely many Euler factors, it was found that the L(H3(X1)) = L( f )
for some f ∈ S4(Γ0(25)), which was identified by C. SCHOEN.

Now note that the quintic X1 (and not X) is a member of the even more famous
Dwork pencil

Xψ : x5
1 + x5

2 + x5
3 + x5

4 + x5
5 = 5ψx1x2x3x4x5

that stands at the beginning of the mirror symmetry story, for which we refer to [8],
[11], [33], [24] . The third cohomology of Xψ is the direct sum of two pieces

H3(Xψ) =V ⊕F .

Here the part F has Hodge numbers 0 100 100 0, and the part V has Hodge num-
bers 1 1 1 1. The Picard–Fuchs equation for this part leads to the hypergeometric
differential equation

P :=Θ 4 −55t(Θ +
1
5
)(Θ +

2
5
)(Θ +

3
5
)(Θ +

4
5
), t = 1/(5ψ)5, Θ = t

d
dt

,

which describes a variation of Hodge structures (VHS) over S := P1 \{0,1/55,∞}.
At the three singular points these Hodge structures degenerate into mixed Hodge
structures (MHS). We refer to [25] for a detailed account of (mixed) Hodge theory.
Quite generally, the Jordan structure of the local monodromy determines the weight
filtration. At t = 0 we have a so-called MUM-point, the monodromy has a maximal
Jordan block. The mixed Hodge diamond looks like

1
0 0

0 1 0
0 0 0 0

0 1 0
0 0

1

(The weight is equal to the height in the diagram, counted by putting lowest row at
height zero; the operator N shifts two steps downwards.) The limiting mixed Hodge
structure is an iterated extension of Tate Hodge structures and it leads to the exten-
sion data described in [12] that are equivalent to the so-called instanton numbers
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computed in [8].

At t = 1/55 there is a single Jordan block of size 2 (a C-point in the terminology
of [31]). The mixed Hodge-diamond for H3 looks like:

0
0 0

0 1 0
1 0 0 1

0 1 0
0 0

0

So we see that the motive GrW
3 H = H3(X) is like that of a rigid Calabi–Yau.

There is one further possible degeneration of a (1,1,1,1)-VHS, that does not
appear in this family, namely where there are two Jordan blocks of size 2 (a K-point
in the terminology of [31]). The mixed Hodge diamond for H3 now looks like

0
0 0

1 0 1
0 0 0 0

1 0 1
0 0

0

So GrW
2 H3 is a (1,0,1)-Hodge structure that looks like the one appearing for

K3-surfaces with Picard number 20.

One of the motivations to look at general motivic (1,1,1,1)-variations over
S = P1 \Σ is the natural appearance of weight four and weight three cusp forms
for Γ0(N) at the boundary points Σ ⊂ P1. Such motivic (1,1,1,1)-variations are
expected to arise from Calabi–Yau operators.

3 Calabi–Yau operators

Calabi–Yau operators, as understood in [4] and [31], are operators ’like’ P . First of
all, they are fourth order Fuchian differential operators

P ∈ C[t,Θ ], Θ = t
d
dt
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that are symplectic and have 0 as a MUM-point. If we look at it from the point
of view of differential operators, it is rather easy to satisfy these conditions, for
example by looking at operators of the form

P =Θ 2PΘ 2 +ΘQΘ +R ,

where P,Q,R are any polynomials with P(0) = 1. In order to classify as a Calabi–
Yau operator, one has to complement these easy conditions with further arithmetical
conditions that are supposed to hold if the operator is a Picard–Fuchs operator of a
1-parameter family of Calabi–Yau varieties defined over Q. In [4] the following
integrality conditions were put forward and used to define Calabi–Yau operators.

I. The holomorphic solution ϕ0(t) has an integral power-series expansion:

ϕ0(t) ∈ Z[[t]] .

II. The q-coordinate has an integral power series expansion

q(t) ∈ Z[[t]] .

III. The normalised instanton numbers become integral

n0 := 1, n1, n2, . . . ,nd , . . .

after multiplication by a common denominator.

Furthermore, the case where all nd = 0,d ≥ 1 is considered as trivial, as in that
case P is the third symmetric power of a second order operator. In fact, it is more
natural to have coefficients in Z[ 1

N ], so to allow denominators involving a finite set
of bad primes. Currently more than 500 operators are known that seem to satisfy
these three conditions (see [2], [3],[10]), but condition III is not proven to hold in
a single case. The first condition should already imply that the operator is of geo-
metric origin, see [5]. There are many examples of operators that satisfy I, but not
II. In a good number of cases integrality of the q-coordinate have been proven [21],
[13]. For some time it was expected that condition III was implied by I and II, until
MICHAEL BOGNER [6] found an operator that satisfies I and II, but for which III
appears to fail. There exists an unpublished paper [34] in which it is claimed that
Picard–Fuchs operators coming from families of Calabi–Yau varieties indeed sat-
isfy these three arithmetical conditions.

Of course, one can also look at differential operators of order different from four,
and try to single out a particular nice sub-class of Calabi–Yau operators of arbitrary
order. For an account, we refer to [6] and [7].)

A particular nice example is operator AESZ 34

Θ 4 − t(35Θ 4 +70Θ 3 +63Θ 2 +28Θ +5)+
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+t2(Θ +1)(259Θ 2 +518Θ +235)−53t3(Θ +1)2(Θ +2)2

that was reported to us long ago by H. VERRILL, [32]. It turned up prominently at
this conference, as it is associated to the 5-fold banana FEYNMAN graph. As such,
it is part of a very nice series of Calabi–Yau operators that exist for all orders. Its
Riemann symbol (see [19]) is 

0 1/25 1/9 1 ∞
0 0 0 0 1
0 1 1 1 1
0 1 1 1 2
0 2 2 2 2

 .

and the holomorphic solution has an expansion of the form

ϕ0(t) =
∞

∑
n=0

Antn, An := ∑
i+ j+k+l+m=n

(
n!

i! j!k!l!m!

)2

.

As for all Calabi–Yau operators, there is a unique Frobenius basis of solutions
around 0 of the form

ϕ0(t) = f0(t)
ϕ1(t) = log(t)ϕ0(t)+ f1(t)
ϕ2(t) = log(t)2ϕ0(t)+2log(t)ϕ1(t)+ f2(t)
ϕ3(t) = log(t)3ϕ0(t)+3log(t)2ϕ1(t)+3log(t)ϕ2(t)+ f3(t)

where f0(t) ∈ Z[[t]], fi(t) ∈ tQ[[t]] (i = 1,2,3).

The points 1/25,1/9,1 are C-points: there appears a single logarithm ’between’
the two equal exponents. The point ∞ is a K-point: there are two logarithms, again
between the two pairs of equal exponents. At each of the conifold points should ap-
pear a weight four modular form of some level, at ∞ there is a weight three modular
form.

4 Euler factors from Picard–Fuchs operators

It has been known from the work of DWORK [15], [16] that there is a very tight link
between the Frobenius operator and the Picard–Fuchs operator in a family of vari-
eties. For the sake of concreteness, let us consider as before a family Yt of Calabi–
Yau 3-folds defined over Q with a MUM-point at 0 and let us fix a prime p. Then
the Frobenius operator

F := Fp ∈ Aut(H3(Yt))

has a characteristic polynomial P(T ) = det(T −F) of the form
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T 4 +aT 3 +bpT 2 +ap3T + p6 ∈ Z[T ] ,

where
a = ap(t) = Tr(F), b = bp(t) = (Tr(F2)−Tr(F)2)/2p.

from which we get the local Euler factor

1+ap−s +bp1−2s +ap3−3s + p6−4s

for the L-function of H3(Yt).

4.1 Unit root method

Let us suppose that the Frobenius polynomial is irreducible, but factors over Zp as

(T −u)(T − v)(T − p3/v)(T − p3/u) ∈ Zp[T ]

with ordp(u) = 0,ordp(v) = 1. Then u is called the unit-root and according to
DWORK [16], this unit root u = u(t) can be computed from the holomorphic so-
lution ϕ0(t) using p-adic analytic continuation of

ϕ0(t)
ϕ0(t p)

and evaluation at Teichmüller lift t̃ of t ∈ P1 (avoiding singular and supersingular
values of t.) Dwork’s unit-root method has been clarified by N. KATZ [20] by for-
mulating it in terms of crystals. In her thesis, K. SAMOL [27] used this method
to compute Euler factors for many families of Calabi–Yau varieties, using only the
Picard–Fuchs equation. One of the important discoveries she made was that in many
cases the method even worked at the singular points of the differential equation, and
thus managed to determine weight four forms attached to C-points of Calabi–Yau
operators, [28]. The explicit control of the p-adic analytic continuation can some-
times be obtained from Dwork congruences on the coefficients An of the holomor-
phic solution. In the context of Calabi–Yau varieties defined by Laurent polynomials
such Dwork congruences can be shown to hold [29], [23].

4.2 Deformation method

The type of crystals we are considering are defined over a ring R, which is a certain
two-dimensional regular local sub-ring of Zp[[t]]. On R there are two operations: the
derivation

Θ : R −→ R, a 7→ t
∂a
∂ t
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and the lifted Frobenius map

σ : R −→ R, a(t) 7→ a(t p) .

One has
Θ ◦σ = p σ ◦Θ .

We will consider a free R-module of rank four H, a non-degenerate symplectic
pairing

⟨−,−⟩ : H ×H −→ R

and two operations
∇ : H −→ H, F : H −→ H

that we call the Gauss-Manin and Frobenius. The operator ∇ a connection, so is
supposed to satify the appropriate Leibniz rule, whereas F is σ -linear. These three
structures are required to satisfy the following compatibilities

i) Θ⟨x,y⟩= ⟨∇x,y⟩+ ⟨x,∇y⟩.
ii) p3⟨x,y⟩= ⟨Fx,Fy⟩.

iii) ∇F = pF∇.

Furthermore, we will have a Hodge-filtration

Fil3 ⊂ Fil2 ⊂ Fil1 ⊂ Fil0 = H

with
∇(Fili)⊂ Fili−1, F(Fili)⊂ piH .

The first part of the structure may be called a polarised F-crystal, including the
filtration makes us speak about a polarised divisible Hodge F-crystals (Fontaine-
Lafaille crystals), we will call it a CY-crystal for short. Let us try to associate such a
structure to a differential operator of the form

P :=Θ 4 + tP1(Θ)+ t2P2(Θ)+ . . .+ trPr(Θ) .

For this, we write everything out in MATRIX-form. We let

H :=
3

∑
i=0

Rϕi ,

where the ϕi are abstract basis vectors, that behave with respect to differentiation as
the Frobenius basis of P . Writing out the action of Θ on them, we can construct
the companion matrix A(t) for the connection ∇ on H corresponding to P:

∇ = t
d
dt

−A(t) ,

where A(t) is of the form
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A(t) =


0 0 0 ∗
1 0 0 ∗
0 1 0 ∗
0 0 1 ∗

= A0 +A1t +A2t2 + . . .+Artr ∈Q[t]4×4 .

Because of the MUM-condition, we have

A0 = N =


0 0 0 0
1 0 0 0
0 1 0 0
0 0 1 0

 .

The matrix Σ of the symplectic form at t = 0 can be taken to be of the form
0 0 0 1
0 0 −1 0
0 1 0 0
−1 0 0 0

 .

We now write the Frobenius matrix in a series

F = F(t) = F0 +F1t +F2t2 + . . .

The above conditions, especially the Griffiths transversality and divisibility, lead to
a very specific form for the constant term F0:

F0 =


ξ 0 0 0

pα ξ p 0 0
p2β p2α ξ p2 0
p3γ p3β p3α ξ p3

 ,

where ξ 2 = 1 and ξ β = α2/2. One give an explicit formula for the series F(t) as

F(t) = E(t p)−1F0E(t) ∈Q[t]4×4 ,

where the matrix E(t) is a modification of the fundamental matrix for the differential
equation

Ẽ jk =Θ kϕ j =


ϕ0 Θ(ϕ0) Θ 2(ϕ0) Θ 3(ϕ0)
ϕ1 Θ(ϕ1) Θ 2(ϕ1) Θ 3(ϕ1)
ϕ2 Θ(ϕ2) Θ 2(ϕ2) Θ 3(ϕ2)
ϕ3 Θ(ϕ3) Θ 2(ϕ3) Θ 3(ϕ3)

 ∈Q[[t]][log t]4×4 .

This matrix reduces mod t to E0
jk :=Θ k log j(t)/ j! and we set

E := (E0)−1Ẽ = ”Ẽ
∣∣∣
log(t)=0

”.
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In all examples we have computed so far, we could make the following

Observations

• All terms of the series F(t) are p-adically integral (depending linearly on α,β ,γ .)

• One can write

F(t) =
φ(t)

∆(t)p−1 mod p3 ,

where φ(t) ∈ (Z/p3)[t]4×4 is a polynomial matrix and ∆(t) is the discriminant
of the operator P .

• The poles cancel at all singularities of P , except for the apparent singularities.
So if P does not have apparent singularities, the matrix F(t) mod p3 is in fact
polynomial.

• We can ’trivially’ read off

a(t) =−TrF(t) mod p3 , b(t) = (Tr(F(t)2)−Tr(F(t))2)/2p mod p3

and these do not depend on the choice of α,β ,γ (this was already observed in
[27].) This suffices to determine the local Euler factor at p for p ≥ 5.

Using this, we can compute Euler factors even at the singular points, as long as
they are not apparent singularities. In particular, it works at the conifold points and
we do not have to care about super-singular behaviour. For example, for the above
mentioned operator AESZ34 one finds characteristic polynomials of Frobenius of
the form

T (T − pχ(p))(T 2 −apT + p3)

for some character χ . We find

1/25 1/9 1
a7 32 −16 −16
a11 −60 12 12
a13 −34 38 38
a17 42 −126 −126

So we recognise, using the table in [22], the weight four cusp forms 6/1 for Γ0(6)
at t = 1 and t = 1/9, and the form 30/1 for Γ0(30) at t = 1/25.

4.3 Lifting to higher order

Let us set α = β = 0 and ξ = 1, but keep γ as a parameter. It appears that there is a
unique choice for γ mod p for which
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F(t) =
φ(t)m(p)

∆(t)ℓ(p)
mod p4

where ℓ(p) is a small slope linear functions of p and φ(t)m(p) is a matrix-polynomial
of small degree m(p) linear in p. For all other choices of γ this structure seems to get
lost. By playing the same game modulo p5, p6, p7, etc, we can determine a number
γ modulo p2, p3, etc. Continuing this way, we obtain a well-defined p-adic number
γ that goes into the Frobenius matrix at the MUM-point:

F0 =


1 0 0 0
0 p 0 0
0 0 p2 0
γ 0 0 p3


For the quintic and p = 11 one finds

γ = 2+2 ·11+3 ·112 +7 ·113 +5 ·114 +5 ·115 +6 ·116 + . . .

Recall the relation between the p-adic ζ (3) and the p-adic gamma function:

−2ζp(3) = logΓ ′′′
p (0) = Γ ′′′

p (0)−Γ ′
p(0)

3 .

The following marvellous miracle seems to take place:

Observation

• γ = r ·ζp(3).
• r = c3(X)/d, where d is the degree of the mirror manifold.

For the quintic r = 200/5 = 40. This is reminiscent of a very similar matrix de-
scribing the hermitian form ⟨x,y⟩, where · is the Frobenius at ∞, that is, complex
conjugation, and the real ζ (3) appears at the place of ζp(3)!

This is the end of the talk and of the conference, but I feel it is the beginning of
something great.

During the conference we have seen some amajzing maths, we had a great taam,
it was really a naas workshop.

A great thank to the organisers Masha, Ling and Wadim!
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