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An integrable discontinuity - Bowcock, EC, Zambon (2003)

Start with a single selected point on the x-axis, say x0, and denote the field to
the left (x < x0) by u, and to the right (x > x0) by v :

. . . • . . .

u(x , t) x0 v(x , t)

Field equations in separated domains:

∂2u = −∂U
∂u

, x < x0, ∂2v = −∂V
∂v

, x > x0, ∂2 = ∂2
t − ∂2

x

• How can the fields u, v be ‘sewn’ together at x0?

• If the wave equations are nonlinear but ‘integrable’ are there sewing
conditions that preserve the integrability?

- Not so easy: see, for example Goodman, Holmes, Weinstein (2002)

- sine-Gordon, KdV, nonlinear Schrödinger, affine Toda field theories ...



• A simple example (δ-impurity) would be to put

u(x0, t) = v(x0, t), ux (x0, t)− vx (x0, t) = 2λu(x0, t),

with linear wave equations for u and v .

• Typically, there is reflection and transmission:

u = e−iωt
(

eikx + R e−ikx
)
, v = e−iωtT eikx , ω2 = k2

with

R = −λe2ikx0

ik + λ
, T =

ik
ik + λ

• There is a distinguished point - translation symmetry is lost and momentum
is not conserved while total energy is preserved including contribution from
the impurity.

• Could an alternative type of defect also compensate for momentum and
other conservation laws?



• Consider the field contributions to energy-momentum:

Pµ =

∫ x0

−∞
dx T 0µ(u) +

∫ ∞
x0

dx T 0µ(v), ∂νT νµ = 0

where the components of T νµ(u) are (similarly with v )

T 00 =
1
2

(
u2

t + u2
x

)
+ U, T 01 = T 10 = −utux , T 11 =

1
2

(
u2

t + u2
x

)
− U

Using the field equations, can we arrange

dPµ

dt
= −

[
T 1µ(u)

]
x=x0

+
[
T 1µ(v)

]
x=x0

= −dDµ(u, v)

dt

with the right hand side depending only on the fields at x = x0?

If so, Pµ + Dµ is conserved with Dµ being the defect contribution.

• It turns out that only a few possible sewing conditions (and bulk potentials
U, V ) are permitted for this to work.



• Consider the field contribution to energy and calculate

dP0

dt
= [ux ut ]x0 − [vx vt ]x0 .

Choosing sewing conditions of the form

ux = vt + X (u, v), vx = ut + Y (u, v), at x = x0

we find
dP0

dt
= utX − vtY .

This is a total time derivative if

X = −∂D0

∂u
, Y =

∂D0

∂v
,

for some D0. Then
dP0

dt
= −dD0

dt
.

- Expected anyway since time translation remains good.



On the other hand, for momentum

dP1

dt
= −

[
u2

t + u2
x

2
− U(u)

]
x0

+

[
v2

t + v2
x

2
− V (v)

]
x0

=

[
−vtX + utY −

X 2 − Y 2

2
+ U − V

]
x0

= −dD1(u, v)

dt

This is a total time derivative provided the first piece is a perfect differential
and the second piece vanishes. Thus

X = −∂D0

∂u
=
∂D1

∂v
, Y =

∂D0

∂v
= −∂D1

∂u
,

In other words the fields at the defect should satisfy:

∂2D0

∂v2 =
∂2D0

∂u2 ,
1
2

(
∂D0

∂u

)2

− 1
2

(
∂D0

∂v

)2

= U(u)− V (v).



Highly constraining - just a few possible combinations for U,V ,D0 ...

• sine-Gordon, Liouville, massless free, or, massive free.

For example, if U(u) = m2u2/2, V (v) = m2v2/2, D0 turns out to be

D0(u, v) =
mσ
4

(u + v)2 +
m
4σ

(u − v)2,

and σ is a free parameter.

• Note: the Tzitzéica (aka BD, MZS, a(2)
2 affine Toda) potential

U(u) = eu + 2e−u/2

is not possible.

• There is a Lagrangian description of this type of defect (type I):

L = θ(−x + x0)L(u) + δ(x − x0)
(uvt − utv

2
− D0(u, v)

)
+ θ(x − x0)L(v)



In the free case (m 6= 0), with a wave incident from the left half-line

u =
(

eikx + Re−ikx
)

e−iωt , v = T eikx e−iωt , ω2 = k2 + m2,

we find:

R = 0, T = − (iω −m sinh η)

(ik + m cosh η)
= −i

sinh
(
θ−η

2 −
iπ
4

)
sinh

(
θ−η

2 + iπ
4

) , σ = e−η

• By design, conserves energy/momentum (no dependence on x0).

• No bound state (provided η is real).

• for comparison recall for δ-impurity:

u(x0, t) = v(x0, t), ux (x0, t)− vx (x0, t) = 2λu(x0, t)),

R = − λe2ix0

λ+ ik
, T =

ik
λ+ ik

- bound state at k = iλ if m > λ > 0.

- the δ-impurity preserves energy but not momentum.



sine-Gordon - Bowcock, EC, Zambon (2003, 2004, 2005)

Choosing u, v to be sine-Gordon fields (and scaling the coupling and mass
parameters to unity), the allowed possibilities are:

D0(u, v) = −2
(
σ cos

u + v
2

+ σ−1 cos
u − v

2

)
,

where σ is a constant, to find

x < x0 : ∂2u = − sin u,

x > x0 : ∂2v = − sin v ,

x = x0 : ux = vt − σ sin
u + v

2
− σ−1 sin

u − v
2

,

x = x0 : vx = ut + σ sin
u + v

2
− σ−1 sin

u − v
2

.

• The final two are a Bäcklund transformation ‘frozen’ at x0.

• The defect could be anywhere - essentially topological

• Higher spin charges, via an adapted Lax pair, are also conserved.



Solitons and defects - Bowcock, EC, Zambon (2005)

The sine-Gordon model has solitons and antisolitons.

Consider a soliton incident from x < 0 (putting x0 = 0).

It will not be possible to satisfy the sewing conditions (in general, for all times)
unless a similar soliton emerges into the region x > 0:

x < 0 : eiu/2 =
1 + iE
1− iE

,

x > 0 : eiv/2 =
1 + izE
1− izE

,

E = eax+bt+c , a = cosh θ, b = − sinh θ, θ > 0

where z is to be determined. It is also useful to set σ = e−η.

• To find....

z = coth

(
η − θ

2

)



z = coth

(
η − θ

2

)
θ > 0

Remarks:

• η < θ implies z < 0; ie the soliton emerges as a (shifted) anti-soliton.

- the final state will contain a discontinuity of magnitude 4π at x = 0.

• η = θ implies z =∞ and there is no emerging soliton.

- the energy-momentum of the soliton is captured by the ‘defect’.

- the topological charge is also captured by a discontinuity 2π.

• η > θ implies z > 0; ie the soliton is shifted but retains its character.



Comments

• Defects at x = x1 < x2 < x3 < · · · < xn behave independently

- each contributes a factor zi for a total z = z1z2 . . . zn.

• Each component of a multisoliton is affected separately

- thus at most one can be ‘filtered out’.

• Since a soliton can be absorbed, could a starting configuration with
u = 0, v = 2π decay into a soliton?

- needs quantum mechanics to provide the probability for decay.

• Contrast previous uses Estabrook - Wahlquist (1973)

- a Bäcklund transformation ‘creates’ a soliton.

• Defects can also move (with constant speed), and scatter.

•What about ‘finite gap’ solutions of sine-Gordon? EC, Parini (2017)

- generally quite complicated....



General solutions of sine-Gordon in terms of generalised theta functions -
see for example Dubrovin, 1981; Mumford, 1984 - are defined over Riemann
sufaces of genus g:

θ(z,B) =
∑
n∈Zg

e
1
2 n·Bn+n·z , z ∈ Cg , Re(B) < 0

An example - for g = 1 these are the Jacobi theta functions:

ϑ1(z) = −ϑ2(z + iπ), ϑ2(z) =
∞∑

n=−∞

e
B
2 (n+ 1

2 )2
+z(n+ 1

2 )

ϑ3(z) = θ(z,B), ϑ4(z) = θ(z + iπ,B)

In terms of these the two solutions to left and right of the defect are:

eiu/2 =
ϑ3(z)

ϑ4(z)
, eiv/2 =

ϑ3(z + ∆)

ϑ4(z + ∆)
, z =

cosh θx − sinh θt
ϑ3(0)ϑ4(0)

+ z0

Then, ∆ is determined via the sewing conditions and given by

eθ−η = i
ϑ1(∆)

ϑ2(∆)
→ tanh

(
∆

2

)
, B → −∞.

The previous result is obtained in the single soliton limit.



Generalisations

• What about Tzitzéica (a(2)
2 affine Toda)?

• Multi-component fields - what about other affine Toda field theories?

- only the a(1)
n affine Toda theories can work - EC, Zambon (2009)

- Bäcklund transformations are similar - Fordy, Gibbons (1980)
• What about nonlinear Schrödinger, KdV, mKdV, etc, etc? Caudrelier,

Mintchev, Ragoucy (2004,) EC, Zambon (2005), Caudrelier (2008), . . .

• Is the setup genuinely integrable? For an alternative (algebraic)
approach see Avan, Doikou (2012, 2013); Doikou (2014, 2016)

• What about SUSY? See, for example, Gomes, Ymai, Zimerman (2008);
Aguirre, Gomes, Spano, Zimerman (2015)

• What about models in 2 + 1 dimensions, for example
Kadomtsev-Petviashvili, Davey-Stewartson, etc?



Classical type II defect - EC, Zambon (2009)

Consider two relativistic field theories with fields u and v , and add a new
degree of freedom λ(t) at the defect location (x0 = 0):

L = θ(−x)Lu + θ(x)Lv + δ(x)
(

(u − v)λt − D0(λ, u, v)
)

Then the usual Euler-Lagrange equations lead to
• equations of motion:

∂2u = −∂U
∂u

x < 0, ∂2v = −∂V
∂v

x > 0

• defect conditions at x = 0

ux = λt − D0
u vx = λt + D0

v (u − v)t = −D0
λ.

• Note: the quantity λ is conjugate to the discontinuity u − v at the defect
location.



As before, consider momentum

P1 = −
∫ 0

−∞
dx utux −

∫ ∞
0

dx vtvx ,

and seek a functional D1(u, v , λ) such that P1
t ≡ −D1

t .

As before, implies constraints on U, V , D1.

Putting q = (u − v)/2, p = (u + v)/2 these are:

D0
p = −D1

λ D0
λ = −D1

p

implying

D0 = f (p + λ, q) + g(p − λ, q) D1 = f (p + λ, q)− g(p − λ, q)

and 1
2

(D0
λD1

q − D0
qD1

λ) = U(u)− V (v)

• Powerful constraint on f , g since λ does not enter the right side
- what is the general solution?



Note:
• Now possible to choose f , g for potentials U,V any one of sine-Gordon,

Liouville, Tzitzéica, or free massive or massless.

• Tzitzéica:

U(u) = (eu + 2 e−u/2 − 3), V (v) = (ev + 2 e−v/2 − 3)

and the defect potential D0(λ, p, q) is given by

D0 = 2σ
(

e(p+λ)/2 + e−(p+λ)/4
(

eq/2 + e−q/2
))

+
1
σ

(
8 e−(p−λ)/4 + e(p−λ)/2

(
eq/2 + e−q/2

)2
)

• In sine-Gordon the type-II defect has two free parameters
- in a sense it is two ‘fused’ type-I defects - EC, Zambon (2009, 2010)

• Other affine Toda field theories?

- a(1)
r , (c(1)

n , d (2)
n+1), a(2)

2n , d
(1)
n - Robertson (2014); Bowcock, Bristow (2017)

- needs unifying idea?



For example, d (1)
4 is not a straightforward generalisation - the defect part of

the Lagrangian is given by Bowcock and Bristow

LD =
4∑
1

uk vkt + 2λ2(u2 − v2)t + 2λ3(u3 − v3)t − (D + D̄)

and

2(U(u)− V (v)) = Dp1 D̄q1 + Dq2 D̄λ2 − Dλ2 D̄q2 + Dq3 D̄λ3 − Dλ3 D̄q3 + Dp4 D̄q4

qk = (uk − vk )/2, pk = (uk + vk )/2,

with the set of relevant roots given in terms of the orthonormal vectors
ek , k = 1, 2, 3, 4 by

α0 = −e1 − e2, α1 = e1 − e2, α2 = e2 − e3, α3 = e3 − e4, α4 = e3 + e4,

so that α2 is the central dot in the d (1)
4 root diagram.



Defects in quantum field theory

• Expect Soliton-defect scattering - pure transmission compatible with the
bulk S-matrix

• Expect Topological charge will be preserved but may be exchanged with
the defect

• Expect For each type of defect there may be several types of
transmission matrix (eg in sine-Gordon expect two different transmission
matrices since the topological charge on a defect can only change by ±2
as a soliton/anti-soliton passes).

• - More generally, expect transmission matrices to be labelled by weight
lattices.

• Expect Not all transmission matrices need be unitary (eg in sine-Gordon
one is a ‘resonance’ of the other)

• Questions Relationship between different types of defect; assemblies of
defects, defect-defect scattering; fusing defects; ...



A transmission matrix is intrinsically infinite-dimensional:

T bβ
aα (θ, η), a + α = b + β

where α, β and a, b are defect and particle (eg soliton) labels respectively
(typically they will be sets of weights); and η is a collection of defect
parameters.

Schematically:

�
�
�
�
�
�
�
�
�
�
��

α

β

a

b



Schematic compatibility relation - Delfino, Mussardo, Simonetti (1994)

�
�
�
�
�
�
�
�
�
�
��

α

γ

b

a

e

f

�
�
�
�
��

≡

�
�
�
�
��

�
�
�
�
�
�
�
�
�
�
��

α

γ

b

a

e

f

Scd
ab (Θ) T fβ

dα(θa)T eγ
cβ (θb) = T dβ

bα (θb)T cγ
aβ (θa)Sef

cd (Θ)

With Θ = θa − θb and sums over the ‘internal’ indices β, c, d .

• For sine-Gordon a solution was known - Konik, LeClair (1999)



Zamolodchikov’s sine-Gordon soliton-soliton S-matrix - reminder

Scd
ab (Θ) = ρ(Θ)


A 0 0 0
0 C B 0
0 B C 0
0 0 0 A


where

A(Θ) =
qx2

x1
− x1

qx2
, B(Θ) =

x1

x2
− x2

x1
, C(Θ) = q − 1

q

xa = eγθa , a = 1, 2, Θ = θ1 − θ2, q = eiπγ , γ =
8π
β2 − 1,

and

ρ(Θ) =
Γ(1 + z)Γ(1− γ − z)

2πi

∞∏
1

Rk (Θ)Rk (iπ −Θ)

Rk (Θ) =
Γ(2kγ + z)Γ(1 + 2kγ + z)

Γ((2k + 1)γ + z)Γ(1 + (2k + 1)γ + z)
, z = iγ/π.



Useful to define the variable Q = e4π2 i/β2
=
√
−q.

• K-L solutions have the form

T bβ
aα (θ) = f (q, x)

(
Qα δβα q−1/2eγ(θ−η) δβ−2

α

q−1/2 eγ(θ−η) δβ+2
α Q−α δβα

)
where f (q, x) is not uniquely determined but, for a unitary transmission
matrix, should satisfy

f̄ (q, x) = f (q, qx)

f (q, x)f (q, qx) =
(

1 + e2γ(θ−η)
)−1

• A ‘minimal’ solution has the following form

f (q, x) =
eiπ(1+γ)/4

1 + ie−2πiy

r(x)

r̄(x)
,

where it is convenient to put y = iγ(θ − η)/2π and

r(x) =
∞∏

k=0

Γ(kγ + 1/4− y)Γ((k + 1)γ + 3/4− y)

Γ((k + 1/2)γ + 1/4− y)Γ((k + 1/2)γ + 3/4− y)



T bβ
aα (θ) = f (q, x)

(
Qα δβα q−1/2eγ(θ−η) δβ−2

α

q−1/2 eγ(θ−η) δβ+2
α Q−α δβα

)

Remarks (supposing θ > 0) - Bowcock, EC, Zambon (2005):

Tempting to suppose η (possibly renormalized) is the same parameter as in
the type I classical model.

• η < 0 - the off-diagonal entries dominate;

• θ > η > 0 - the off-diagonal entries dominate;

• η > θ > 0 - the diagonal entries dominate.

• Similar features to the classical soliton-defect scattering.

• The different behaviour of solitons versus anti-solitons (diagonal terms) is a
direct consequence of the defect term in the Lagrangian proportional to

δ(x − x0)(uvt − vut )/2



• θ = η is not special (neither is y = −1/4) but there is a simple pole nearby
at y = 1/4:

θ = η − iπ
2γ
→ η, as β → 0

This pole is like a resonance, with complex energy,

E = ms cosh θ = ms(cosh η cos(π/2γ)− i sinh η sin(π/2γ))

and a ‘width’ proportional to sin(π/2γ).

• The Zamolodchikov S-matrix has ‘breather’ poles corresponding to
soliton-anti-soliton bound states at

Θ = iπ(1− n/γ), n = 1, 2, ..., nmax;

use the bootstrap to define the transmission factors for breathers and find for
the lightest breather:

T (θ) = −i
sinh

(
θ−η

2 −
iπ
4

)
sinh

(
θ−η

2 + iπ
4

)



Type II transmission matrix for sine-Gordon - EC, Zambon (2010)

There is another, more general, set of solutions to the quadratic relations for
the transmission matrix:

ρ(θ)

(
(a+Qα + a−Q−α x2) δβα x (b+Qα + b−Q−α) δβ−2

α

x (c+Qα + c−Q−α) δβ+2
α (d+Qα x2 + d−Q−α) δβα

)
where x = eγθ.

The free constants satisfy the two constraints

a± d± − b± c± = 0

These and ρ(θ)are constrained further by crossing and unitarity.

• For a range of parameters this describes a type II defect.

•With a− = d+ = 0 and b+ = c− = 0 or b− = c+ = 0 (after a similarity
transformation), reduces to the type I solution.

• For another choice of parameters reduces to a direct sum of the
Zamolodchikov S-matrix and two infinite dimensional pieces.



Alternative formulation - Weston (2010)

Summary: for Type II

T = ρ(x)

(
xa+Q−N + x−1a−QN A

A∗ xd+QN + x−1d−Q−N

)
,

where A∗ and A are ‘generalised’ raising and lowering operators, respectively,

A∗|k〉 = |k + 2〉 A|k〉 = F (k)|k − 2〉 N|k〉 = k |k〉, k ∈ Z

F (N) = f0 + f+Q2N + f−Q−2N , f+ = Q−2a−d+, f− = Q2a+d−

- T intertwines the coproducts of finite (soliton) and infinite (defect)
representations of the Borel subalgebra of Uq(a(1)

1 ).

- Idea extends to all other quantum algebras allowing (in principle)
calculations of associated defect matrices. For some examples see
EC, Zambon (2010), Boos et al. (2011).

- How to construct A,A∗ in terms of fields?



Defect-defect scattering - type I

T bγ
1 aα T cδ

2 bβ Uρσ
γδ = Uδγ

αβ T bρ
2 aδ T cσ

1 bγ .

Ti ≈
(

QNi βi x Ai

βi x A∗i Q−Ni

)
, i = 1, 2

where
x = eγθ, q = eiπγ , Q2 = −q; β∗i = βi .

Data carried by βi , Ai , A∗i , i = 1, 2, F (N) = f0, with two sets of mutually
commuting generalised annihilation and creation operators.

U is independent of x : equating terms in powers of x leads to the following
four equations:(

β2 QN1 A2 + β1 Q−N2 A1

)
U = U

(
β1 QN2 A1 + β2 Q−N1 A2

)
(
β1 QN2 A∗1 + β2 Q−N1 A∗2

)
U = U

(
β2 QN1 A∗2 + β1 Q−N2 A∗1

)
QN1+N2 U = U QN1+N2 , A1 U A1 = A2 U A2



U =
∞∑

k=−∞

Ak
1 A−k

2 Uk (N1,N2, λ), λ = β1/β2

Then
Uk+2(N1,N2, λ) = Uk (N1 − 2,N2 + 2, λ)

U2l (N1,N2, λ) = U0(N1 − 2l,N2 + 2l, λ)

U2l+1(N1,N2, λ) = U1(N1 − 2l,N2 + 2l, λ).

and (
λQ−N2 A1 + QN1 A2

)
U = U

(
Q−N1 A2 + λQN2 A1

)
,

QN1−2U(N1,N2)
1 + λQ−N2 U(N1,N2)

0 = λQN2 U(N1−2,N2)
0 + Q−N1 U(N1,N2−2)

1

QN1 U(N1,N2+2)
0 + λQ−N2 U(N1+2,N2)

1 = λQN2+2U(N1,N2)
1 + Q−N1 U(N1,N2)

0



Formal generating functionals

U(x , y) =
∑
n,m

xnymU0(n,m), V (x , y) =
∑
n,m

xnymU1(n,m)

Then

λU(x , y/Q) + Q−2V (Qx , y) = λx2U(x ,Qy) + y2V (x/Q, y)

(λ/x2)V (x , y/Q) + (1/y2)U(Qx , y) = λQ2V (x ,Qy) + U(x/Q, y).

These can be written slightly more symmetrically by rearranging and putting
r = Q, s = λQ:

x U(x , ry)− x−1 U(x , r−1y) =
y
xs

(
(ry)−1 V (rx , y)− ry V (r−1x , y)

)
y−1 U(rx , y)− y U(r−1x , y) =

ys
x

(
rx V (x , ry)− (rx)−1 V (x , r−1y)

)
.

•What is the general solution?



Boundaries revisited: the sine-Gordon model EC, Zambon (2012)

Start with a single selected point on the x-axis, say x0 = 0, and denote the
field to the left (x < 0) by u:

. . . •
u(x , t) x0

• The sine-Gordon model with a general (two-parameter) integrable
boundary condition was analyzed by Ghoshal, Zamolodchikov (1994), ...

• ...and sine-Gordon model with dynamical boundary was considered by
Baseilhac, Delius (2001), Baseilhac, Koizumi (2003)

• A defect (or several defects) can be placed in front of the boundary and
generate a new boundary (as seen from x � 0); for the sinh-Gordon
example, see Bajnok, Simon (2008).



But...

• The defect will introduce dependence on topological charge in the modified
reflection matrix.

• Generally, the boundary should be considered as carrying topological
charge, which may change as a soliton reflects.

• Ansatz

Rb β
aα(θ) =

(
r+(α, x) δβα s+(α, x) δβ−2

α

s−(α, x) δβ+2
α r−(α, x) δβα

)
• Boundary Yang-Baxter equation Cherednik (1984)

Rq β
aα(θa) Sp s

b q(Θ+)Rr γ
p β(θb) Sd c

s r (Θ−) = Sp q
b a (Θ−)Rr β

p,α(θb)Ss c
q r (Θ+)Rd γ

s β (θa),

with Θ+ = (θb + θa) and Θ− = (θb − θa).



• Ghoshal-Zamolodchikov solution reformulated

Rb β
aα(θ) = σ(θ)

(
(r1x + r2/x) δβα k0

(
x2 − 1/x2) δβ−2

α

l0
(
x2 − 1/x2) δβ+2

α (r2x + r1/x) δβα

)
and l0 = k0, r1r2 = 1.

• General solution

r+(α, x) =
(

x2 − 1/x2
)(

r3qα+1x − r4q−α−1/x
)

+ r1x + r2/x ,

r−(α, x) =
(

x2 − 1/x2
)(

r4q−α+1x − r3qα−1/x
)

+ r2x + r1/x ,

s+(α, x) =
(

x2 − 1/x2
)

(k0 + k1qα + k2q−α),

s−(α, x) =
(

x2 − 1/x2
)

(l0 + l1qα + l2q−α),

k1l1 = −r 2
3 , k2l2 = −r 2

4 , k1l0 + q2k0l1 = qr2r3, k0l2 + q2k2l0 = qr1r4.

• A defect placed in front of a boundary generalises R according to

Rb β β̃
aα α̃(θ) = T c γ̃

a α̃ (θ)Rd β
c α (θ)T̂ b β̃

d γ̃ (θ)

where T̂ (θ) = T−1(−θ).



Begin with an R matrix corresponding to a Dirichlet boundary condition,

R(0)d β
c α(θ) = σ(θ)

(
(rx + x−1r−1) δβα 0

0 (rx−1 + xr−1) δβα

)

• TIIR(0)T̂II is equivalent to the general solution given above when TII is the
general type II transmission matrix;

• TIR(0)T̂I equivalent to the G-Z solution when TI is restricted to the type I
(Konik-LeClair) transmission matrix.

• Is there a Lagrangian description of the generalised boundary condition
corresponding to the general solution? For example

LB(u, λ) = θ(−x)LsG + δ(x)(uλt − B(u, λ)),

with
B(u, λ) = eλ/2f (u) + e−λ/2g(u),

and
f (u)g(u) = h+eu/2 + h−e−u/2 + 2 (eu + e−u) + h0



Thank you!


