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An integrable discontinuity -

Start with a single selected point on the x-axis, say xo, and denote the field to
the left (x < xo) by u, and to the right (x > xp) by v:

u(x,t) Xo v(x,t)
Field equations in separated domains:

_ov

5, XX P =07 — 02

Pu=—-—==, x<x, 0v=
e How can the fields u, v be ‘sewn’ together at x,?

e If the wave equations are nonlinear but ‘integrable’ are there sewing
conditions that preserve the integrability?

- Not so easy: see, for example
- sine-Gordon, KdV, nonlinear Schrédinger, affine Toda field theories ...



e A simple example (d-impurity) would be to put
u(xo, t) = v(xo,t), ux(xo,t) — vx(Xo,t) = 2A\u(Xo, 1),
with linear wave equations for v and v.
o Typically, there is reflection and transmission:
U= et (eikx + Re—ikx) L v= e—itheikx7 W2 = K2
with

A e2ikxo ik

R=— ik + A

e There is a distinguished point - translation symmetry is lost and momentum
is not conserved while total energy is preserved including contribution from
the impurity.

e Could an alternative type of defect also compensate for momentum and
other conservation laws?



e Consider the field contributions to energy-momentum:
Xo oo
p* :/ ax T%(u) +/ dx T (v), 8,T"* =0
— 00 X0
where the components of T"#(u) are (similarly with v)

]
TO = (u? + uf) FU T =T =y, T =

5 (u,2+uf)—U

N =

Using the field equations, can we arrange

ol

X=Xp
with the right hand side depending only on the fields at x = xp?
If so, P* + D" is conserved with D" being the defect contribution.

e It turns out that only a few possible sewing conditions (and bulk potentials
U, V) are permitted for this to work.



e Consider the field contribution to energy and calculate

Clid
ot

Choosing sewing conditions of the form

= [uxtt]x, — [Vx Vi

ux = Vvi + X(u,v), vx =ur+ Y(u,v), at X =Xxo

we find .
% =uX—-wY.
This is a total time derivative if
_ o, o
Tou’ T ov
for some D°. Then
P _ o
at — dt’

- Expected anyway since time translation remains good.



On the other hand, for momentum

aP' U+ U Vit Vg
Xo X0
X2 Y2 dD' (u, v)
{7V1X+Utyf > +va} ==

X0

This is a total time derivative provided the first piece is a perfect differential
and the second piece vanishes. Thus

__op°_op' \,_oD" oD
© Qu 9v’ 9v  du’
In other words the fields at the defect should satisfy:

PD°  9PD° A <8D°)2 1 (aDO
2

2
e~ a2 2\ ou aT) = U = Vw).



Highly constraining - just a few possible combinations for U, V, D° ...
e sine-Gordon, Liouville, massless free, or, massive free.
For example, if U(u) = m?u?/2, V(v) = m?v?/2, D° turns out to be

mo

D°(u,v) = 4

(u+v)® + %(u — V)3,

and o is a free parameter.

« Note: the Tzitzéica (aka BD, MZS, &\ affine Toda) potential
U(u) = e + 27"/

is not possible.

e There is a Lagrangian description of this type of defect (type I):

uvy — Uy

£ = 0(=x + x0)L(u) + 5(x — x0) (1 L - D)) +00x - x0)£(v)



In the free case (m # 0), with a wave incident from the left half-line

u= ( IkX + F],eflkx> —Iu.zt7 Te/kx 71wt’ w2 _ k2 + m2’
we find
R=0 T (Iw - mSi”hn) i sinh (9 L - %r) e "
=0, = — — = — - , 0=
(Ik + mcosh 'f]) sinh (9277 + %r)

e By design, conserves energy/momentum (no dependence on Xp).
e No bound state (provided 7 is real).
o for comparison recall for §-impurity:

u(xo, t) = v(xo, t), ux(xo,t) — vx(Xo,t) = 2Xu(xo, t)),

Ag?o r_ ik
A+ik> T N+ ik

R=-

- bound state at k = ixif m> X\ > 0.

- the §-impurity preserves energy but not momentum.



sine-Gordon -

Choosing u, v to be sine-Gordon fields (and scaling the coupling and mass
parameters to unity), the allowed possibilities are:

where ¢ is a constant, to find

D°(u,v) = -2 (acos u;— 4 + 0 'cos u- V>7

—sinu,
—sin v,
v si + Vv ,15. u—v
t — o sin — 0o n
2 2’
. u+v 1. uUu—-v
Ut + o sin — o0 sin .
2 2

e The final two are a Backlund transformation ‘frozen’ at xo.

e The defect could be anywhere - essentially topological

e Higher spin charges, via an adapted Lax pair, are also conserved.



Solitons and defects -
The sine-Gordon model has solitons and antisolitons.
Consider a soliton incident from x < 0 (putting xo = 0).

It will not be possible to satisfy the sewing conditions (in general, for all times)
unless a similar soliton emerges into the region x > 0:

i 1+ IiE
0: Iu/2: i
X< © 1—-iE’
i 1+izE
. iv/2
x>0: e = T
E = e¥*htte, a=coshf, b= —sinhd, 0>0

where z is to be determined. It is also useful to set o = e~ ".

e To find.... 0
_ n—-
Z = coth ( > )



_ n—=0
zfcoth(i2 ) f>0

Remarks:
e 1) < 0 implies z < 0; ie the soliton emerges as a (shifted) anti-soliton.

- the final state will contain a discontinuity of magnitude 47 at x = 0.

e 1) = @ implies z = oo and there is no emerging soliton.
- the energy-momentum of the soliton is captured by the ‘defect’.

- the topological charge is also captured by a discontinuity 27.

e 7> 0 implies z > 0; ie the soliton is shifted but retains its character.



Comments

e Defects at x = x1 < X2 < X3 < -+ < X» behave independently
- each contributes a factor z; foratotal z = z1z . . . z,.

e Each component of a multisoliton is affected separately
- thus at most one can be *filtered out'.

e Since a soliton can be absorbed, could a starting configuration with
u =0, v =27 decay into a soliton?

- needs quantum mechanics to provide the probability for decay.
e Contrast previous uses

- a Bécklund transformation ‘creates’ a soliton.
e Defects can also move (with constant speed), and scatter.
e What about ‘finite gap’ solutions of sine-Gordon?

- generally quite complicated....



General solutions of sine-Gordon in terms of generalised theta functions -
see for example - are defined over Riemann
sufaces of genus g:

0(z,B)= > e2"B"M2 7 €Y Re(B) <0
nez9
An example - for g = 1 these are the Jacobi theta functions:

0(2) = —dalz 4 im). Da(2)= 3 ef(rd)eord)

93(2) = 0(z,B), 9a(z) = 0(z + im, B)

In terms of these the two solutions to left and right of the defect are:

i 93(2) w2 U3(z+ A) cosh Ox — sinh 0t
v/ = 2 g2 ZRET )y T P 4 2
4(2)’ Ja(z + D) 93(0)ds(0) 7
Then, A is determined via the sewing conditions and given by
0—n _ 1791 (A)
U2(A)

— tanh (%) , B— —o0.

The previous result is obtained in the single soliton limit.



Generalisations

e What about Tzitzéica (avg2> affine Toda)?
o Multi-component fields - what about other affine Toda field theories?
- only the a'!) affine Toda theories can work -

- Backlund transformations are similar -
e What about nonlinear Schrédinger, KdV, mKdV, etc, etc?

e Is the setup genuinely integrable? For an alternative (algebraic)
approach see

e What about SUSY? See, for example,

e What about models in 2 + 1 dimensions, for example
Kadomtsev-Petviashvili, Davey-Stewartson, etc?



Classical type Il defect -

Consider two relativistic field theories with fields v and v, and add a new

degree of freedom \(¢) at the defect location (xo = 0):

L= 0(—x)Ly + 0(x)Ly + 5(x) ((u —V)x - D°(\u, v))

Then the usual Euler-Lagrange equations lead to
e equations of motion:

ou

2 —_———
ou= 90

e defect conditions at x =0

x>0

Uuv=M—-0D5  wvi=Mx+D% (u—v)=-D%

¢ Note: the quantity \ is conjugate to the discontinuity v — v at the defect

location.



As before, consider momentum

’ 0 oo
P :7/ dxu[uxf/ ax Vivy,
—o00 0

and seek a functional D'(u, v, \) such that P} = —D;.
As before, implies constraints on U, V, D'.
Putting g = (u— v)/2, p = (u+ v)/2 these are:
Dy=-D\ D}=-Dj
implying
D°=f(p+X2q)+9(p—-Aq D' =fp+Xq) —g(p-Aa)
and 2(D8D} — D3DL) = U(u) ~ V(v)

e Powerful constraint on f, g since X\ does not enter the right side
- what is the general solution?



Note:

e Now possible to choose f, g for potentials U, V any one of sine-Gordon,
Liouville, Tzitzéica, or free massive or massless.

o Tzitzéica:
Uu)=(e"+2e "2 -3), V(v)=(e"+2e /2 -3)
and the defect potential D°()\, p, q) is given by
D’ — 24 (e<p+A)/2 4 g (PHN/4 <eq/2 + e,q/2>>
. (8 e O N (6912 4 e—q/2>2)
g
e In sine-Gordon the type-Il defect has two free parameters
-in a sense it is two ‘fused’ type-| defects -
e Other affine Toda field theories?

-l (), o), 2.

- needs unifying idea?



For example, dﬁ” is not a straightforward generalisation - the defect part of
the Lagrangian is given by

4
Lp= Z Uk Vit + 2)\2(U2 — Vg); + 2/\3(U3 — Vg)t — (D + D)
1

and
2(U(U) - V(V)) = DP1 Dth + D¢72D>\2 - D/\2DCI2 + D%D/\3 - D/\3DQ3 + DPAD(M

Qe = (U — Vi) /2, pr = (U + vk)/2,

with the set of relevant roots given in terms of the orthonormal vectors
ex, k=1,2,3,4 by

Qg = —€1 — €2, A1 = €1 — €2, Q2 = €2 — €3, 3 = €3 — €4, (4 = €3 + €4,

so that «» is the central dot in the d}” root diagram.



Defects in quantum field theory

o Expect Soliton-defect scattering - pure transmission compatible with the
bulk S-matrix

o Expect Topological charge will be preserved but may be exchanged with
the defect

e Expect For each type of defect there may be several types of
transmission matrix (eg in sine-Gordon expect two different transmission
matrices since the topological charge on a defect can only change by +2
as a soliton/anti-soliton passes).

¢ - More generally, expect transmission matrices to be labelled by weight
lattices.

e Expect Not all transmission matrices need be unitary (eg in sine-Gordon
one is a ‘resonance’ of the other)

¢ Questions Relationship between different types of defect; assemblies of
defects, defect-defect scattering; fusing defects; ...



A transmission matrix is intrinsically infinite-dimensional:

T20,m), ata=b+p

where «, 3 and a, b are defect and particle (eg soliton) labels respectively
(typically they will be sets of weights); and 7 is a collection of defect
parameters.

Schematically:

e




Schematic compatibility relation - Delfino, Mussardo, Simonetti (1994)

Il
-

5%(0) T3 (02)T53 (05) = To (06) T3 (02)SEa(©)

With © = 6, — 6, and sums over the ‘internal’ indices 3, ¢, d.

e For sine-Gordon a solution was known - Konik, LeClair (1999)



Zamolodchikov’s sine-Gordon soliton-soliton S-matrix - reminder

A 0 0 O
0 C B 0
Sacg(e):p(e) 0 B C 0
0 0 0 A
where ]
axz X1 X1 Xo
AO)="=- — BO)=—-=,0C0O©)=qg— —
(€)=~ o BO) =31~ 0@ =a- ¢
Xa:eﬁ/eia:1327@:91_925q:eiﬁ’y7’y:%_17
and
T+ 2r—y-2) .
p(©) = BT ]Jm@ymm_@
R(O) = F(2ky + 2)F(1 + 2ky + 2)

M@kt 1) T £ @k+ )52 2= /™



Useful to define the variable Q = &*~ /%" — ./ —g.
o K-L solutions have the form

Oa 55 q71/26'y(97n) 55*2
T;f(ﬁ) = f(q, x) ( q /2 e0=) 5p+2 Q s’

where f(q, x) is not uniquely determined but, for a unitary transmission
matrix, should satisfy

?(q,x) = f(qaqx)
fla0lga) = (1+7077)

e A ‘minimal’ solution has the following form

1

gim(1+7)/4 r(x)

aX) = T Teaw 7(x)°

where it is convenient to put y = iy(6 — n)/27 and

ﬁ T(ky+1/4 =y ((k+1)y+3/4—y)

r(x) = . Fr((k+1/2)y+1/4—y)r((k+1/2)y+3/4—y)



p Q- 5£ 71/267(077;) 6372
T;;(@) = f(q7 X) ( q71/2 eﬁ/(97n) 63+2 d Q« 63

Remarks (supposing 6 > 0) -
Tempting to suppose 7 (possibly renormalized) is the same parameter as in
the type I classical model.
e 1 < 0 - the off-diagonal entries dominate;
e 0 >n > 0 - the off-diagonal entries dominate;

e 1 > 0 > 0 - the diagonal entries dominate.

e Similar features to the classical soliton-defect scattering.

e The different behaviour of solitons versus anti-solitons (diagonal terms) is a
direct consequence of the defect term in the Lagrangian proportional to

5(x — xo)(uve — vuy)/2



e ) = n is not special (neither is y = —1/4) but there is a simple pole nearby
aty =1/4:

i
2y
This pole is like a resonance, with complex energy,

0=n— —mn,as B —0

E = mg cosh 6 = ms(cosh i cos(m/2v) — isinhnsin(w/27))

and a ‘width’ proportional to sin(7/27).

e The Zamolodchikov S-matrix has ‘breather’ poles corresponding to
soliton-anti-soliton bound states at

©=ir(1—n/y), n=1,2, ..., Mnax;

use the bootstrap to define the transmission factors for breathers and find for
the lightest breather:

inh 0—m _
Ty = —iSh (22 = %)

sinh (0;” +




Type Il transmission matrix for sine-Gordon -

There is another, more general, set of solutions to the quadratic relations for
the transmission matrix:

(a;Q*+a-Q “x*)5% x(byQ*+b_-Q )62
p(e) e — B+2 a2 —a B
X(c: Q% +c-Q %) 4, (dyQ*x*+d-Q %) oL
where x = ",
The free constants satisfy the two constraints
ardis —byrcyr =0
These and p(#)are constrained further by crossing and unitarity.

e For a range of parameters this describes a type Il defect.

e Witha_ =d. =0and by =c_ =0or b_ = c; = 0 (after a similarity
transformation), reduces to the type | solution.

e For another choice of parameters reduces to a direct sum of the
Zamolodchikov S-matrix and two infinite dimensional pieces.



Alternative formulation -

Summary: for Type Il

_ xa, QN +x"'a_Q" A
T - p(X) ( A* Xd+ON + X71d7 Q—N El

where A* and A are ‘generalised’ raising and lowering operators, respectively,
A'lky = |k+2) Alk) = F(k)lk—2) N|k)=klk), ke Z

FINy=h+£"+f Q2 f =Q%d, f =Qad

- T intertwines the coproducts of finite (soliton) and infinite (defect)
representations of the Borel subalgebra of Uq(a§1)).

- Idea extends to all other quantum algebras allowing (in principle)
calculations of associated defect matrices. For some examples see

- How to construct A, A* in terms of fields?



Defect-defect scattering - type |

by cd [ po 115 bp co
Tiaa Toog Uls = Usis Togs Tiby -

QNi ,‘XA,‘ .

where )
x=e"’ qg=€e", ®=—-q B =8

Data carried by g;, Ai, A7, i=1,2, F(N) = f,, with two sets of mutually
commuting generalised annihilation and creation operators.

U is independent of x: equating terms in powers of x leads to the following
four equations:

(52 Q" Ao+ 51 Q7" A) U=U (B Q%A+ 507 A2)
(51 QeA 1 BQ M A;) U=u (52 QYA+ B Qe AT)

QUM U= UQM e, A UA = A UA



U: Z Aq(AZ_kUk(NhNQ,)\), )\:61/62

k=—oc0
Then
Ui2(Ni, No, ) = U(Ni — 2, N2 + 2, \)
Uai(Ny, N2, A) = Uo(Ny — 21, N2 + 21, \)
Uz 1 (Ny, N2y XN) = Us(Ny — 21, No 4 21, 0).
and

(r@ oA+ QA ) U=U(Q M+ 20" A,
QM2 U1(N1’N2) +aQ e U(()N1’N2) — Q" U(()N172’N2) +Q M U1(N1JV2*2)

QN1 U(()N1,N2+2) + )\Q—NZ U1(N1 +2,Ny) _ )\QN2+2 U1(N1,N2) + Q—N1 U(()N1,N2)



Formal generating functionals

U, y) = S Xy Us(n ), V(x,y) = Zx”yf"umn m)

Then
AU(x,y/Q)+Q72V(Ax.y) = MU(x,Qy) +y*V(x/Q.y)
A/X*)V(x,y/Q) +(1/y)U(Qx.y) = AQV(x, Q)+ U(x/Q.y).
These can be written slightly more symmetrically by rearranging and putting
r=Q, s=\Q:

xUGry) =x U0Gry) = L ()7 Vioy) =y Vi 'x,)
ys

y Uy =y Uy = 2 (Vo) = (007 V)

e What is the general solution?



Boundaries revisited: the sine-Gordon model

Start with a single selected point on the x-axis, say xo = 0, and denote the
field to the left (x < 0) by u:

u(x,t) Xo
e The sine-Gordon model with a general (two-parameter) integrable
boundary condition was analyzed by

e ...and sine-Gordon model with dynamical boundary was considered by

o A defect (or several defects) can be placed in front of the boundary and
generate a new boundary (as seen from x < 0); for the sinh-Gordon
example, see



But...

e The defect will introduce dependence on topological charge in the modified
reflection matrix.

e Generally, the boundary should be considered as carrying topological
charge, which may change as a soliton reflects.

e Ansatz
RbB(G) — r+(a,x)5£ S+(O[,X) 6(672
ao s_(a,x) 0272 r_(a,x)d8
e Boundary Yang-Baxter equation
RIZ(02) Sh5(0+)Ry4(06) SEF(O-) = SP2(©-)Rpa(65)S57(0+) RS (8a),

With © = (0 + 02) and ©_ = (0, — 0a).



e Ghoshal-Zamolodchikov solution reformulated

bB gy _ (nXx+r2/x)65 ko (x*—1/x%) 6572
Faalf) =o(®) ( b (x?—=1/x?) 65" (rx+r/x)0]
and lo = ko, rnr=1.

e General solution

ri(a, x) ( —1/x (raq X — r4q‘”‘1/x) +rnx+r/x,

‘)

r( (x2 —1/x ) ( oty r3q“_1/x> + X + 1 /X,
‘)
‘)

(x2 1/x%) (ko + kig® + keq™ ),
)= (X = 1/%°) (b + ha* + g ™),
kily = =12, koh = —12, kilo+ QPkoly = qrars, kol + GPkolo = qri1s.
o A defect placed in front of a boundary generalises R according to
RILEO) = TE(O)RIL(O)TRZ(6)
where T(0) = T-1(—0).



Begin with an R matrix corresponding to a Dirichlet boundary condition,

©98 (rx +x7"r ") 58 0
A ca(0) = o(0) ( 0 (rx= "4 xr=1) 68

o TWROT,is equivalent to the general solution given above when Tj is the
general type Il transmission matrix;

o TR T, equivalent to the G-Z solution when T; is restricted to the type |
(Konik-LeClair) transmission matrix.

e |s there a Lagrangian description of the generalised boundary condition
corresponding to the general solution? For example
La(u,\) = 0(—x) Lsg + 6(X)(urt — B(u, \)),
with
B(u,\) = &"/*(u) + e *?g(u),

and
f(u)g(u) = hi "/ + h_e™/? +-2(e" + &™) + hy



Thank you!



